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Abstract—GraphQL is a type of web API which enables a
unified endpoint for an application’s resources through its own
query language, and is widely adopted by companies such as
Meta, GitHub, X, and PayPal. The query-based structure of
GraphQL is designed to reduce the over-/under-fetching typical
of REST web APIs. Consequently, GraphQL allows attackers
to perform Denial-of-Service (DoS) attacks through queries in-
ducing higher server loads with fewer requests. However, with
the additional complexity introduced by GraphQL, ensuring
applications are not vulnerable to DoS is not trivial.

We propose WENDIGO, a black-box Deep Reinforce-
ment Learning (DRL) approach only requiring the GraphQL
schema to discover DoS exploitable queries against target
applications. For example, our approach is able to discover
queries which can perform a DoS attack utilizing only two
GraphQL requests per hour, as opposed to the high volume
of traffic required by traditional DoS attacks. WENDIGO
achieves this by building increasingly more complex queries
while maximizing response time by using GraphQL features to
increase the server load. The effective query discovery offered
by WENDIGO, not only enables developers to test for potential
DoS risk in their GraphQL applications but also showcases
DRL’s value in security problems such as this one.

Index Terms—Reinforcement Learning, Deep Neural Network,
Denial-of-Service Attack, Internet Security, Web Security

1. Introduction

GraphQL is an enticing alternative to REST APIs as it
provides a unified graph abstraction to an application’s web
resources. GraphQL shows a widespread adoption across
industry with institutions such as Meta, GitHub, X, and
PayPal adopting this API [1], alongside the 33.4% of sur-
veyed API developers who planned to utilize GraphQL in
2020 [2]. All the while, DoS attacks are a recurrent issue
across multiple domains [3]. The traditional paradigm for
DoS attacks involves flooding the target system with high
volumes of traffic and protocol exploitation to overwhelm
its resources [3]. However, as a result of the powerful
nature of GraphQL, complex operations can replace high
traffic volumes, making DoS a serious threat to GraphQL
applications [4]. An empirical study exemplifies this stating
that most commercial and large open-source GraphQL APIs
may be susceptible to DoS [5]. The aforementioned study’s

claims are further supported by a 2022 survey stating that
of the respondents only 21.7% use timeouts, 23.1% use
rate limiting, 26.7% use depth limiting, and 17.5% use cost
analysis [6]. With this potential risk in GraphQL, it becomes
crucial that developers evaluate whether maliciously crafted
queries can cause DoS. To perform this evaluation, as a
result of the complex and expansive nature of the potential
query space, an automated approach is necessary to search
for malicious queries.

To aid in this security testing problem, we propose
WENDIGO: a black-box DRL agent-based approach to dis-
cover GraphQL queries which can be leveraged to perform
a DoS attack.1 WENDIGO consists of two key components:
the environment and the agent. The environment converts the
GraphQL schema into the state and action spaces. The state
space is a recursive expansion of the schema using GraphQL
features which increase server load, thereby creating a
representation of a bounded subset of the potential query
space, therefore the states are representations of potential
DoS queries. The action space mirrors that of the state
space however it contains add and remove actions for each
component of the state space. The agent chooses an action to
modify the current query and receives the response time of
that modified query as a reward. Through these components,
WENDIGO not only discovers queries which induce large
response times, but it is also able to build on these queries
further maximizing their resource usage.

To the best of our knowledge, we are the first to utilize
DRL to discover DoS queries in the GraphQL domain. Evo-
lutionary algorithms have been used for white-box fuzzing
of GraphQL applications, focusing on search-based testing
and not the discovery of DoS queries [7]. Although they
may be effective at finding bugs, we demonstrate that they
are insufficient at discovering the GraphQL specific DoS
risk in an application. Other research discusses the risk of
DoS for GraphQL applications by utilizing specific hand-
crafted queries [3, 4, 5]. However, our approach eliminates
the need to handcraft samples for applications. Machine
learning (ML) based approaches have also been used to
great success in other security testing tasks [8, 9, 10], with
DRL specifically being used to search for adversarial inputs
in other domains such as SQL injection [11] and cross-site

1. WENDIGO gets its name from the Algonquian legend about a malev-
olent spirit whose hunger and size grows the more it consumes which is
analogous to how our approach grows queries the more server resources
are consumed.
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scripting [12]. Although these approaches cannot be directly
applied as a result of the differences in domains, their past
successes motivate our use of DRL for the task of DoS query
discovery in GraphQL.

In summary, our main contributions are:

• We propose WENDIGO, an approach to effectively
search for queries which could be exploited for DoS
attacks in the GraphQL domain. As a part of this
approach, we design a gymnasium environment to
encapsulate GraphQL applications for DRL.

• We show that WENDIGO not only outperforms both
of random-search baselines and a state-of-the-art
fuzzer, EvoMaster [7], but also able to discover
queries that can be exploited to cause severe delays.

• We open-source the WENDIGO code to encourage
future research, and accelerate security testing of
GraphQL applications: https://github.com/isneslab/
Wendigo.

2. Background

This section first discusses DRL, i.e., the method that
guides our discovery, and then EvoMaster [7], the fuzzer
we used as our baseline. Subsequently, we present the basic
concepts of GraphQL, the specific features of GraphQL used
in our approach and the connection to DoS attacks.

Deep Reinforcement Learning. DRL is a type of ML
in which an agent learns through interacting with an envi-
ronment [13]. The three key components of a DRL problem
are the: states, actions, and rewards. From a state, the agent
decides on an action that results in a reward and a new
state. DRL utilizes a neural network to either: determine
the value of an action from a state (value-based), determine
a policy (policy-gradient), or a combination of both (actor-
critic) [13]. Deep Q-Network (DQN) [14], a value-based
method, is often used when DRL is applied to security
problems [11, 12, 15, 16, 17, 18]. However, actor-critic
methods often outperform value-based or policy-gradient
methods in other domains [13, 19, 20, 21].

EvoMaster. EvoMaster [10] was initially crafted as an
evolutionary white-box testing tool tailored for RESTful
APIs, relying on their schema provided in the OpenAPI
specification format [22]. Recent developments have ex-
tended its capabilities to encompass testing for GraphQL
APIs [7]. In real-world scenarios, accessing the code for
white-box testing may not always be feasible. Fortunately,
EvoMaster realises a black-box approach that employs a
Random Search [23] on syntactically valid queries to explore
the input space [7].

GraphQL. GraphQL is a query language for APIs
which provides flexibility in retrieving data through a single-
request declarative approach, thereby addressing both under-
fetching and over-fetching problems in REST APIs. For
example, consider the scenario in which a client requires
a user’s e-mail and the content of their posts. In REST,
this would require a request to access the path users/{id},
retrieving all information regarding the user, resulting in

over-fetching. However, only the first request is insufficient
to retrieve the user’s posts, thereby causing under-fetching.
Therefore, a second access to the path users/{id}/posts is
required to retrieve the content of the posts. In contrast,
GraphQL requires a single request, called a query, to retrieve
the precise data needed. An example of such a query would
be:

query {
users (id:{id}) {
email
posts{
content

}
}

}

In a query, objects represent entities, such as users or
posts, that consist of fields. Fields within an object are
the individual pieces of data or references to objects. In
addition, arguments pass on information for the resolution of
a specific field, and aliases allow renaming fields in a query
for clarity or to prevent naming conflicts. This structure is
defined in the schema.

DoS Vulnerabilities in GraphQL. When the aforemen-
tioned concepts of GraphQL are used improperly, they can
introduce unique attack vectors for DoS. We utilize the
DoS attack vectors derived from standard GraphQL features,
proposed in [24], as the set of capabilities used to derive the
state and action spaces of our approach. The attack vectors
are as follows:

Circular Objects are a result of a circular relationship in
object references resulting in a potentially infinite amount
of recursion in the query request. Querying circular objects
increases server load by forcing the server to recursively
retrieve objects to fulfill the request.

Field Duplication is when fields in a query are repeated
so that when the server resolves the query it has to repeat-
edly resolve the same field thereby increasing server load.

Alias Overloading is similar to field duplication however
it uses aliases to repeat fields under different names and by
default there are no limits on the number of aliases.

Object Limit Overriding results when servers allow the
number of objects returned from a specific query to be spec-
ified by an argument, therefore the limit can be increased
to increase the load on the server.

Array-Based Query Batching allows multiple queries to
be sent in a single request thereby reducing the volume of
requests required to perform a DoS attack.

Denial-of-Service. Traditionally, DoS attacks and Dis-
tributed DoS (DDoS) attacks, utilize high volumes of traffic
to flood networks to impact the availability of an applica-
tion [25, 26]. However, DoS attacks do not require high
traffic volumes, Low-rate DoS (LDoS) attacks such as shrew
account for only 10-20% of normal traffic [27]. LDoS
attacks achieve DoS through the use of periodic pulses
instead of a high volume of traffic while maintaining good
attack performance compared to DoS or DDoS [25]. In the
case of DoS in GraphQL, we extend the intuition behind
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the aforementioned LDoS attack however instead of traffic
pulses we periodically use complex queries crafted from the
aforementioned attack vectors.

3. WENDIGO

We propose WENDIGO, a black-box DRL agent-based
approach for DoS exploitable query discovery in GraphQL
applications. We first discuss the motivation behind a black-
box approach. Then, we present the environment which
consists of the state, action, and rewards utilized to encapsu-
late interactions with a GraphQL application. Subsequently,
we discuss the design of the agent and random search ap-
proaches. A flow chart showing the connection between the
concepts described in this section is presented in Figure 1.

Wendigo
Environment

State

Repeat StateNew State

Query

Docker
Target

Response

Reward

Is Rejected Response Time

Skipped

Agent

State

Neural Network

Action

Figure 1: Flowchart of WENDIGO query discovery.

Black-Box. The motivation behind the design of a black-
box approach is that it makes a more realistic threat model,
utilizing only the URL and schema which would be available
to a realistic adversary as the schema is often publicly
available or can be reconstructed. Furthermore, black-box
approaches can make security testing accessible to prod-
uct developers who otherwise lack deep security expertise.
WENDIGO does not utilize any internal information from,
or code of, the target application and only relies on the
response time and queries generated. Our experiments and
released code utilize Docker containers instead of a URL
to ensure evaluations are conducted safely in a controlled
environment.

Environment. The environment was designed following
the specifications of Gymnasium [28], a standardized agent-
environment communication API, allowing compatibility
between different agents and environments. The state, ac-
tion, and rewards of the environment are defined as follows.

State. We design the current state to be a represen-
tation of the current query, therefore the state transitions
imposed by actions reflect query modifications. To represent
the GraphQL query space as the state space, we use the

settings of max depth and max height to bound the state
space. max depth represents the maximum recursion when
constructing the state space from the query space, and
max height represents the maximum of a single value in
the state space. In the state space, each valid field/object lo-
cation has values for field duplication and alias overloading.
Additionally, objects have values for object limit overriding
arguments, with circular objects being implicitly included
by the recursive construction of the state space. Finally,
Array-based query batching has its own value to specify
the batch size for queries; if not specified, only a single
query is sent. An example of the state to query conversion,
pruned to only present values for readability, is as follows:

State: [1, 2, 1, 2]

State-to-Query Mapping:
[users-DUP, users_email-DUP,
users_posts-DUP,
users_posts_content-ALIAS]

Query: query {
users { Depth = 1 & Height = 1

email | Height = 2
email |
posts { Depth = 2 & Height = 1

C1:content | Height = 2
C2:content |

Actions. The action space mirrors that of the state
space, however, it has an add, and a remove action for
each value in the state space. These actions result in the
increase or decrease of the value at a location in the state.
The multiplier setting is the quantity by which a value
is increased or decreased when a action is performed. add
enables the agent to expand or further exploit a fruitful
section of the query. Conversely, remove allows the agent
to remove or reduce a disadvantageous section of the query.
If a performed action is invalid in the current state then no
modification occurs and the query is skipped.

Rewards. The reward for a state-action pair is the
response time of the application in seconds. This implic-
itly handles rejected queries as a result of their marginal
response times. If the state-action pair does not produce a
new query then the query is skipped and a response time of
zero seconds is returned.

Agents. The agent decides the action to take given the
current state. The DRL algorithm chosen for our approach
is Proximal Policy Optimization (PPO) [29], an actor-critic
method, utilizing the original settings and implementation of
the algorithm from cleanrl [30]. PPO was chosen as it shows
superior performance and training time when compared
other algorithms in [29].

We design two random search-based techniques in our
environment to show the value of an agent-based approach.
First, Random uses random action selection and secondly,
Random-Greedy uses a random action selection which only
updates the current state if the new response time is greater
than the state’s response time. We utilize random search for
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these approaches following the lead of EvoMaster’s black-
box setting as mentioned in Section 2.

4. Experimental Settings

In this section we present our target, baseline, the two
settings used for query discovery, and our DoS attack design
used to show the value of our discovery.

Target. For evaluation safety we use a docker con-
tainer of the target application. We utilize Damn Vulnerable
GraphQL Application (DVGA) [31], as a proof of concept
to show the potential of our approach on a vulnerable appli-
cation. We do not evaluate WENDIGO on real applications
in this initial work because we want to ensure the evaluation
is conducted safely in cooperation with the developers.

Baselines. The motivation behind our selection of a
baseline from existing approaches is twofold. Firstly, to
the best of our knowledge, there are no other approaches
designed to discover DoS queries in the GraphQL domain,
barring simple test suites which evaluate only the presence
of specific attack vectors. Secondly, without alternatives,
developers would have to rely on state-of-the-art fuzzers.
Therefore utilizing a fuzzer as a baseline evaluates if a
GraphQL fuzzer is sufficient to effectively search for DoS
queries in an application. For the aforementioned reasons
we have decided to utilize EvoMaster, a state-of-the-art
GraphQL fuzzer, as our main baseline.

Additionally, we also utilize Random and Random-
Greedy in our environment as additional baselines. For all
evaluations the two random agents use the same random
seed value therefore the only difference is the aforemen-
tioned state transition criteria in Section 3.

Settings. We consider two settings for evaluating query
discovery: UNPROTECTED and PROTECTED.

The UNPROTECTED setting for query discovery evalu-
ates an application with no mitigations in place to protect
against DoS. Although we are not enforcing protections
through the use of constraints in this case, for practical
reasons the trained and random agents’ state and action
spaces require bounds. Therefore, we utilize the settings
max depth = 10, and max height = 100. We utilize
multiplier = 10 to speed up the query discovery since
we have a large bound on max height. Additionally, we
set EvoMaster’s max depth = 10. For the UNPROTECTED
setting query discovery, we present the first 384 steps (3 PPO
updates) as the agent sufficiently exploits the application in
this time frame.

The PROTECTED setting for query discovery evaluates
an application with depth and field height limiting for
DoS mitigations to reduce the max complexity of requested
queries. To model this basic protection we utilize the built-in
constraints of our environment. Therefore, we set the trained
and random agents to max depth = 5, and max height =
5. We use a multiplier = 1 so that the approaches do
not rapidly over-step the constraints. Additionally, we set
EvoMaster’s max depth = 5. For the PROTECTED setting
query discovery, we present the first 1, 280 steps (10 PPO
updates).

DoS Attack Design. We take the highest response time
(HRT) queries from both of the aforementioned settings and
utilize them to perform a DoS attack on the application. We
conduct this attack by sending the query to the application
and waiting for the full response before re-sending the query.
This results in pulses of activity by the attacker, akin to
that described by the LDoS attack in Section 2. While the
attacker is sending its queries we have a benign user sending
a basic query in the same fashion. The benign query has an
average response time, over 100, 000 queries, of 0.00783
seconds when the application is not under attack. We send
queries from both the attacker and benign user for an hour
(3, 600 seconds) and wait until the last query from both
agents is received. We then use the number of attacker
queries required to successfully perform the DoS to compare
the attack efficacy across settings and approaches.

Metric 4.1 (%Denial). To calibrate the DoS attack to ensure
a fair comparison, we use the percentage of benign user
response time which is a result of the attack. Formally, we
define %Denial as follows:

%Denial =

P
(⌧̂ � ⌧̄)P
(⌧)

(1)

Where: ⌧̄ is the mean of the pre-attack response times
for benign queries; � is the standard deviation of the pre-
attack response times for benign queries; B is the set of the
benign user’s response times during the attack, with ⌧ 2 B;
Impacted response times ⌧̂ 2 {�|� 2 B,� > (⌧̄ + 2�)}
uses threshold ⌧̄ + 2� to determine the out of distribution
response times with 2� to reduce the threshold’s sensitivity
to noise.

5. Results

This section presents the results for our evaluation of
WENDIGO on DVGA.

For readability: seconds have been abbreviated to ‘s’;
rejected and skipped queries have been excluded from Fig-
ure 2, but can be found in Table 1.

UNPROTECTED Setting. The UNPROTECTED results
are presented in Figure 2a and consist of four separate runs:
PPO, Random, Random-Greedy and EvoMaster.

Random and Random-Greedy have comparable perfor-
mance under this setting as a result of their shared selection
strategy. EvoMaster achieves a maximum response time of
23.96s throughout the evaluation, however, only achieves
these response times sporadically.

Finally, the PPO agent is able to surpass both the random
agents in 114 steps as well as EvoMaster in 144 steps. At
350 steps the agent achieves a response time of 1, 649.57s
before the application docker is terminated because of mem-
ory over-consumption and then the environment and state
are restarted to continue evaluation.

For the UNPROTECTED setting, the query with the HRT
of all queries is produced by PPO and induces a response
time of 1, 649.57s. When we utilize this query to perform
the attack described in Section 4, we get an average response
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Figure 2: The results of the UNPROTECTED and PROTECTED settings on PPO, Random-Greedy, Random, and EvoMaster.
The plots present the response time y of a query at step x. Note the different scales of the y-axis for readability.

time of 1, 824.18s over 3, 648.36s for the attacker and
456.00s over 3, 648.04s for the benign user. The attacker is
able to successfully perform a DoS with a 99.998%Denial

utilizing only 2 queries, the least amount of attack queries
required for this setting. The remainder of the attack results
for the UNPROTECTED setting are presented in Table 1.

PROTECTED Setting. The PROTECTED results are pre-
sented in Figure 2b and consist of four separate runs: PPO,
Random, Random-Greedy and EvoMaster.

Random performs comparable to Random-Greedy for
the first 215 steps. However, subsequently drops off in
performance as a result of randomly removing valuable
components of the query. Random-Greedy stays within the
20.64s to 57.77s range throughout the evaluation as a re-
sult of maintaining sub-optimal states as its baseline. After
Random’s initial decline, it is able to slowly increase the
response time, eventually surpassing Random-Greedy. As
a result of Random not being tied to a baseline state, it
can explore more freely. EvoMaster achieves a maximum
response time of 29.68s throughout the evaluation. However,
it finds such response times sporadically and not consistently
like our methods.

Finally, the PPO agent takes 650 steps to surpass Evo-
Master and 681 steps to surpass both of the random agents.
PPO continues to increase the response time up to 208s at
1, 155 step in which the application docker is terminated
because of memory over-consumption and then the envi-
ronment is restarted to continue evaluation. In comparison,
it took the UNPROTECTED PPO agent only 219 steps to
achieve a 208s response time, thereby showing the impact
of constraints on our agents.

For the PROTECTED setting, the query with the HRT
of all queries is produced by PPO and induces a response
time of 208s. When we utilize this query to perform the
attack described in Section 4, we get an average response
time of 20.28s over 3, 609.65s for the attacker and 5.49s
over 3, 603.81s for the benign user. The attacker is able to
successfully perform a DoS with a 99.852%Denial utilizing
178 queries, the least amount of attack queries required
for this setting. The remainder of the attack results for the
UNPROTECTED setting are presented in Table 1.

Temporal Vulnerabilities. The reason for the deviation
in response time, between the query discovery and DoS
attack of PPO with the PROTECTED setting, is a result of the
audit field which requests the application’s logs. Therefore,
the time to process the audit field is dependent on the size of
the application’s logs which grow throughout the execution
of the experiment. Although the audit field is less effective
initially on a clean application, our agent was able to learn
to exploit it through the temporal nature of the discovery.

This shows the value of our approach which utilizes no
preconceived knowledge about the application besides the
schema and learns through interacting with and exploiting
an application.

6. Discussion

Importance of an Agent. The advantage of utilizing
an agent-based approach is evident when comparing across
the results. The Random approach suffers from a lack of
information resulting from the completely random action
selection, thereby discovering good states purely on chance.
The Random-Greedy approach is more stable as a result of
the state transition criteria maintaining the best state seen so
far, however, the approach suffers when the state maintained
is sub-optimal. Although both of the random agents perform
better than the agent initially, once the agent begins to learn
the environment, both random agents are greatly surpassed.

Designed for Purpose. State-of-the-art fuzzers, such
as EvoMaster, may be sufficient for finding surface-level
DoS queries in GraphQL as can be seen across the results,
however, it only scratches the surface. We observe a 68.85x
and 7x increase in the max response time for discovery using
the UNPROTECTED and PROTECTED settings respectively
when compared to EvoMaster. It is essential to take into
consideration that EvoMaster was designed for comprehen-
sive coverage of the input space and not to discover DoS
queries. Therefore, intrinsically in its structure it lacks the
capabilities for array-based query batching, field duplication,
and circular object exploitation which are features crucial for
DoS query generation in GraphQL. These findings show the
importance of having an approach designed for the problem
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TABLE 1: Table displaying the percentage of queries skipped, rejected queries, and highest response time (HRT) for
discovery as well as denial percentage for attack calibration and the number of queries required to perform the attack.
Queries are skipped if an invalid action is chosen and queries are rejected by the application if they are malformed. Note
that EvoMaster does not perform query skipping.

Approach Setting Query Discovery DoS Attack
Queries Skipped Rejected Queries HRT %Denial Attack Queries

PPO UNPROTECTED 43.35% 14.06% 1649.57s 99.998% 2 Queries
PROTECTED 36.88% 1.25% 208.00s 99.852% 178 Queries

Random UNPROTECTED 47.92% 3.91% 70.74s 99.956% 52 Queries
PROTECTED 38.98% 1.95% 81.61s 99.847% 594 Queries

Random Greedy UNPROTECTED 48.70% 0.26% 65.75s 99.962% 65 Queries
PROTECTED 47.03% 0.39% 57.77s 99.726% 1169 Queries

EvoMaster UNPROTECTED - 27.34% 23.96s 99.729% 1222 Queries
PROTECTED 28.59% 29.68 99.674% 1434 Queries

at hand, especially with the high-risk and complex nature
of the GraphQL query space.

Impact of DoS in GraphQL. GraphQL’s ability to
provide a unified interface for applications, all the while
reducing under- and over-fetching, can be very beneficial
to benign users and attackers alike. This is exemplified in
our DoS Attack results in Table 1, in which we achieve
successful DoS attacks with queries discovered by our
approach utilizing only 2 and 178 query requests for the
UNPROTECTED and PROTECTED settings respectively. This
demonstrates the importance of having an approach able to
discover valid queries that pose a DoS threat for the purpose
of application testing.

7. Availability

We release WENDIGO’s Python prototype to the research
community to promote its use in finding potential DoS
queries for GraphQL applications, as well as future work
in this direction. The WENDIGO prototype can be found at:

https://github.com/isneslab/Wendigo

8. Related Work

The context of GraphQL application fuzzing, besides
EvoMaster [7], also been explored as part of a micro-
services architecture fuzzer [32], primarily focusing on
detecting inconsistencies between the expected and actual
returned types. However, these tools generally aim to cover
the schema, maximizing coverage without being explicitly
designed to uncover more than simplistic bugs.

For payload generation, mutational fuzzing has been
applied for evading web application firewalls in WAF-A-
MoLE [33] and DRL has been applied to SQL injection in
SQiRL [11] as well as cross-site scripting in HAXSS [12].
Although these approaches successfully perform security
testing in their respective domains, as a result of the fun-
damental differences in the syntax of domains as well as
objective of the testing, would be incompatible with DoS
security testing of GraphQL applications.

Finally, the presence and basic exploitation of DoS and
other vulnerabilities in GraphQL has been covered in [24].
Static and dynamic tools such as InQL [34], GraphQL
Cop [35] and BatchQL [36] test for these vulnerabilities.
However, they focus on detecting each attack vector by
performing simple checks. Therefore, they do not focus on
the discovery of more complex queries utilizing a combina-
tion of these vulnerabilities. To the best of our knowledge,
we are the first to utilize DRL to discover DoS exploitable
GraphQL queries through the combination of vulnerabilities.

9. Conclusion

As GraphQL becomes increasingly prevalent and the
cybersecurity landscape continues to be challenging, it is
essential to recognize how DoS attacks affect GraphQL
applications. The potential for significant disruption through
the misuse of specific GraphQL features, which can lead
to powerful attacks with minimal traffic, necessitates thor-
ough testing. Therefore, this paper introduces WENDIGO, a
novel agent-based black-box security testing method aimed
at discovering DoS vulnerabilities in GraphQL queries.
WENDIGO offers an automated solution that replaces the
need for manually crafted test queries, facilitating devel-
opers in actively safeguarding their GraphQL applications
against such threats.

As future work, we first intend to extend the capabili-
ties of our approach by including more pathways for DoS
exploitation and investigate the impact that different DRL
algorithms and approaches (e.g., hierarchical DRL) have
on our query discovery. Subsequently, we plan to test the
most common GraphQL defenses utilized in the industry
to evaluate their robustness to our approach, and identify if
these defenses can be improved. Finally, we would like to
collaborate with developers of real-world applications to be
able to safely evaluate our approach in the wild, in addition
to aiding in the improvement of DoS robustness for the
evaluated application through responsible disclosure.
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S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G.
Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[30] S. Huang, R. F. J. Dossa, C. Ye, J. Braga,
D. Chakraborty, K. Mehta, and J. G. Araújo,
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