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Abstract—This paper investigates the threat of backdoors in
Deep Reinforcement Learning (DRL) agent policies and pro-
poses a novel method for their detection at runtime. Our
study focuses on elusive in-distribution backdoor triggers. Such
triggers are designed to induce a deviation in the behaviour
of a backdoored agent while blending into the expected data
distribution to evade detection. Through experiments con-
ducted in the Atari Breakout environment, we demonstrate
the limitations of current sanitisation methods when faced with
such triggers and investigate why they present a challenging de-
fence problem. We then evaluate the hypothesis that backdoor
triggers might be easier to detect in the neural activation space
of the DRL agent’s policy network. Our statistical analysis
shows that indeed the activation patterns in the agent’s policy
network are distinct in the presence of a trigger, regardless of
how well the trigger is concealed in the environment. Based on
this, we propose a new defence approach that uses a classifier
trained on clean environment samples and detects abnormal
activations. Our results show that even lightweight classifiers
can effectively prevent malicious actions with considerable
accuracy, indicating the potential of this research direction
even against sophisticated adversaries.

Index Terms—deep reinforcement learning, backdoor attacks

1. Introduction

Deep Reinforcement Learning (DRL) has emerged as a
powerful tool, achieving impressive results across a variety
of applications (e.g., self-driving cars [1], nuclear fusion [2],
networked system protection [3]–[5] and healthcare sys-
tems [6], [7]), indicating its viability for real-world deploy-
ment. Nonetheless, the development of effective DRL poli-
cies is resource-intensive, often beyond the reach of smaller
entities. Consequently, many users depend on DRL models
trained by organisations with substantial resources such as
large corporations or government entities. This dependency
introduces new risks, as externally trained models may have
defects in their policies, whether deliberate or accidental,
resulting in unsafe agent actions.

This work investigates backdoors in DRL agent poli-
cies, designed to trigger unexpected behavior deviations
with specific environmental cues. Such backdoors can be

introduced through compromised training processes, such as
a malicious insider adjusting a car-driving agent’s rewards
to disregard stop signs when a certain sticker is detected in
vicinity. Although extensively studied in supervised learn-
ing, backdoors represent a distinct challenge in DRL. Their
elusive design, the lack of absolute action correctness in
every scenario/step produced by the neural networks, and the
intrinsic complexity and opacity of the policy significantly
hinder interpretation and detection of malicious modifica-
tion.

This work studies existing DRL backdoor countermea-
sures and introduces a novel research direction for the
detection of backdoor-induced actions at runtime. We first
discuss the concept of a trigger and argue that defences
against non-elusive triggers fail to generalise against more
sophisticated adversaries. To evaluate our hypothesis, we
introduce in-distribution triggers. These triggers fall within
the anticipated distribution of data encountered in the envi-
ronment and yet 1) consist of a set of conditions that are
exceedingly rare in natural environmental occurrences, and
2) can be intentionally instigated to activate the backdoor.

Using the breakout environment, we evaluate the effec-
tiveness of [8], a well-known defence method, against our
backdoored breakout agent. [8] sanitises the observations
from the environment before they reach the agent, so as
to remove any artifacts that could be triggers. We find
that the safe subspace projection from [8] fails to thwart
the threat. We then hypothesise that the neural activations
of the policy network might exhibit distinct patterns when
the agent perceives a benign goal (e.g., a winning square)
compared to when a trigger is detected. If such a discrepancy
is present in the neural activations space, then a defender
can detect triggers regardless of how subtle they are in the
environment. To investigate this hypothesis, we conduct a
statistical analysis of the neural activation space. Our results
show that there is indeed a statistically significant (p <
0.05) discrepancy between trigger and goal activations. This
indicates that the defender could detect the presence of a
trigger.

Based on these findings, we collect samples from several
clean environment episodes and train a classifier to detect
abnormal activations. Our results show that even lightweight
classifiers are able to detect up to 92% of episodes contain-
ing triggers (with only 3% false positives), giving F1 scores
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as high as 0.94 and AUC values of 0.96. Given such a classi-
fier, the defender can detect abnormal situations and activate
a fallback process (e.g., hand over to a human operator in the
case of a car). In summary, our key contributions include:

• Implementing an in-distribution backdoor trigger
that evades existing backdoor policy sanitisation al-
gorithms, thus demonstrating the need for improved
detection methods.

• Showing that the neuron activation patterns in DRL
algorithms suffice to detect the presence of elusive
backdoor triggers, elucidating the impact of the re-
ward function on the neurons of the policy network.

• Developing a classifier that utilises those activation
patterns to uncover the presence of a trigger in the
environment.

The source code for our experiments can be found in: https:
//github.com/alan-turing-institute/in-distribution-backdoors

2. Background

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a subset of machine
learning focused on teaching agents to attain an ”optimal
policy” for maximum performance in a given environment
through trial and error. This method rewards or penalizes
actions based on their outcomes, a strategy Sutton and
Barto [9] term as ”hedonistic” for its focus on maximizing
environmental signals. The advent of Deep Reinforcement
Learning (DRL) has markedly advanced RL agent capa-
bilities by combining RL’s strategic decision-making with
deep learning’s representation prowess. DRL enables agents
to learn intricate policies for decision-making through en-
vironmental interaction, effectively mapping states to ac-
tions to optimize long-term rewards. Whereas traditional RL
approaches like Monte-Carlo or tabular Q-Learning excel
in achieving optimal behavior, they often lack computa-
tional efficiency and struggle with extensive state and action
spaces. Conversely, DRL demonstrates its robust potential in
managing complex challenges, from gaming to robotics, as
showcased in groundbreaking efforts like Mnih et al.’s Deep
Q-Network (DQN) [10], marking a significant evolution in
the discipline.

2.2. Proximal Policy Optimisation

PPO is a popular policy gradient method [11]–[13] that
builds on the policy gradient framework. It refines the
Trust Region Policy Optimisation (TRPO) algorithm [14]
by simplifying it while retaining its efficiency. In policy
gradient methods, the gradient of the objective function
guides policy improvement. This objective (depends on
policy π and parameters θ) optimises the expected rewards
across trajectories (Equation 1) and leverages the advantage
function to assess action benefits (Equation 2) within the
environment it is operated on E .

J(π, E , θ) = Eτ∼πθ
R(τ) =

∑
τ

P (τ ; θ)R(τ) (1)

∇θJ(π, E , θ) = Eπ0[∇θ log πθ(s, a)Aπθ
(s)] (2)

PPO ensures moderate policy updates using an actor-
critic structure. The actor selects actions, while the critic
evaluates them, facilitating balanced updates (Equation 3).
The critic’s evaluations help refine the actor’s decisions,
promoting a more effective and efficient learning process.
This streamlined approach underscores PPO’s adaptability
and performance across diverse RL applications.

Lt(θ) = Êt[−c1L
V F
t (θ) + c2Sπθ], (3)

2.3. Backdoor Policy Attacks

A recent and emerging threat in the context of DRL is
policy backdoors. Such backdoors are clandestine vulnera-
bilities deliberately inserted or learned within an RL policy,
which can be activated by specific triggers to cause the
policy to behave in a predefined, potentially harmful manner.
Unlike traditional security breaches that exploit software
vulnerabilities, policy backdoors exploit the learning process
itself, capitalising on the way an algorithm learns from
its environment to embed these hidden behaviours. The
malicious behaviour is only exhibited under very specific
conditions not covered by typical evaluation protocols. Sim-
ilar to data poisoning in supervised learning [15], triggers
are embedded in the training environment, causing the DRL
agent to learn and retain detrimental behaviours that are
activated by the attacker’s chosen conditions. Such a trig-
ger can be an arbitrary modification of the environment
either by introducing a completely out-of-distribution item
(e.g., a sticker on a stop sign) or an unusual combination
of components from the environment (e.g., an unexpected
arrangement of traffic lights and road markings that mimics
a non-existent traffic rule). More formally, given state s and
a permutation β, a trigger can be represented by:

s̃ := s+ β (4)

The adversary, A, formulates the attack via equation:

A(s,m,∆) = (1−m) ◦ s+m ◦∆ (5)

where m and ∆ are matrices that define the position mask
and the value of the trigger δ respectively. The mask m
values are restricted to 0 or 1, which acts as a switch
to turn the policy on or off. Given the expected return
from a normally trained policy shown in 1, the adversary
aims to reduce the affected return (or the overall objective
performance output) when the backdoor policy is activated,
as shown in the equation:

J(π, E , θ)− J(π̃, Ẽ , θ) ≫ ε (6)

where J is the expected reward Ẽ is an environment includ-
ing the backdoor trigger and θ is the model’s parameters.
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3. Threat Model

Backdoor policy attacks pose a risk in situations where
the integrity of the training process has been breached. They
can occur when the party responsible for the training differs
from the one deploying it (e.g., the user of a self-driving
car), or when the training and deployment are handled by
the same party but the training pipeline has been compro-
mised. Our work focuses on mitigating the effects of DRL
backdoors from the perspective of an end-user. We assume
a sophisticated, strategic, and well-resourced adversary con-
cerned with introducing a backdoor in the agent’s policy
network. They (e.g., a malicious employee) can tamper
with the training environment and the reward function used
during training, so as to influence the behaviour of the agent
and introduce their trigger(s). The design of the trigger, the
backdoored agent’s behaviour and other details of the attack
are determined by the adversary (specifically, deciding on
values for s̃, m and ∆ in Equations 4 and 5), and this
information is known only to them.

The end-user, or defender, only has access to the trained
policy network, including its architecture and weights, and
the original, unmodified environment. Their goal is to safely
use the pretrained agent for its intended purpose while
safeguarding against any hidden backdoors. Given their
limited computational resources, the user, like someone
using a self-driving car, cannot afford to retrain the driving
agent or employ resource-intensive defense measures during
operation. Additionally, the defender is unaware of the pres-
ence, nature, and potential effects of any embedded triggers.
Effective countermeasures must therefore be able to detect
or neutralize potential backdoors under these constraints.
This scenario aligns with common assumptions found in
the literature on backdoors in deep reinforcement learning
(DRL) policies. [16]–[18].

3.1. In-Distribution Triggers

A straightforward countermeasure against policy back-
doors is for the defender to detect the presence of the trigger
in the agent’s environment before the agent gets to act.
However, as discussed in the previous section, the defender
does not have any knowledge of the trigger’s specification
and it is thus not clear what they should be looking for.
By definition, triggers should not occur naturally in the
environment but only after the adversary’s intervention. This
means that they are outliers. However, due to the complexity
of most environments, detecting them remains a difficult
task [19]. In fact, a sophisticated adversary would put a lot
of effort into concealing their triggers within the specific
environment. This will make detecting them even harder
and might help them evade other countermeasures. In this
work, we focus on in-distribution triggers which fall within
the anticipated distribution of the environment and rely on
a set of conditions that are exceedingly rare in natural
environmental occurrences. As far as we are aware, the
concept of in-distribution triggers was briefly touched upon
in the study by Ashcraft et al., 2021 [20], yet there appears

to be a lack of further investigation into this topic despite
its importance [21].

4. Sanitisation Methods

Due to the lack of detection and defense methods against
backdoor triggers in real-time [22], [23], Bharti et al. [8]
introduced at NeurIPS 2022 a method that sanitises back-
door policies in pretrained agents. Their method operates
unsupervised, estimating and projecting states onto a clean
empirical subspace derived from the clean samples’ co-
variance and eigendecomposition. It effectively filters out
states suggested outside this subspace, replacing them with
suitable alternatives within it. Evaluations on Atari games
like Boxing-Ram and Breakout showcased the approach’s
efficiency, which varies based on the collected sample size
for each environment and the dimensionality of the safe
subspace. To the best of our knowledge, this method is the
only countermeasure that is agnostic to the environment,
the agent’s architecture and the adversary, while it does not
require retraining or computationally-heavy preprocessing
(e.g., retraining).

Given the importance of this result, we revisit some
of its assumptions and evaluate if they hold under our
threat model (Section 3). Specifically, we hypothesise that
the proposed sanitisation method might not be effective
against in-distribution triggers (as defined in Section 3.1).
There is an implicit assumption that the trigger will always
lie in the spurious dimensions from E⊥ and can thus be
‘sanitised’ by filtering those dimensions out. This places a
strong limitation on the design of the triggers the adversary
can use, as they are assumed only able to use triggers that
are clearly out of distribution. For instance, their trigger
for the Atari Breakout environment is a distinct 3x3 white
square pixel at the top left corner of the game’s screen which
does not follow the game’s pallet or aesthetics. However, as
discussed in Section 3.1, the adversary is able to design the
triggers to be elusive and easy to conceal in their target
environment (i.e., in-distribution triggers). We thus argue
that the algorithm’s guarantees may not hold against all
realistic triggers as claimed.

We now assess the sanitisation algorithm’s efficacy
against an in-distribution trigger within the Atari Breakout
environment. As seen in Figure 1b, the trigger appears as a
missing tile within the game’s tile array. It meets the criteria
for in-distribution because it could plausibly occur within
the game’s observation space but is not practically possible
due to the game’s mechanics. The rest of the backdoor
implementation was identical to that of Kiourti et al. [18] for
strong targeted attacks (also employed by Bharti et al. [8]),
which involves placing the backdoor at uniform intervals
in the environment and rewarding the agent for behaving
unsafely in its presence.

As depicted in Figure 2, our in-distribution backdoor
successfully eludes the sanitisation algorithm of [8]. Specif-
ically, the authors’ results against a simple trigger, rep-
resented in green, show the algorithm’s performance sur-
passing that of the clean environment following sanitisa-
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Figure 1. Visual outcomes from applying Bharti et al.’s [8] sanitisation
algorithm in the Atari Breakout environment with two types of backdoor
triggers: a) (left) the algorithm has successfully sanitised the 3x3 white
square trigger at the top left corner of the game’s screen, and b) (right) the
algorithm has failed to remove our in-distribution attack, missing the tile
trigger.
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Figure 2. Graph comparing the effectiveness of Bharti et al.’s [8] saniti-
sation algorithm against sample size, with agent performance baselines in
clean (blue line) and simple trigger scenarios (red line). The algorithm’s
effect on neutralising a simple trigger is shown by the green line, while its
impact on our in-distribution trigger is illustrated by the orange line. The
results show that our in-distribution trigger eludes neutralisation by their
algorithm, highlighting its inability to detect subtle triggers.
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Figure 3. The graph shows the impact of Bharti et al.’s [8] sanitisation
algorithm on agent behaviour with increasing empirical safe subspace
dimensions across 32,768 samples. The green line shows how the algorithm
retains the performance of the agent when the safe subspace has 20,000
dimensions, while simultaneously neutralising a simple backdoor trigger.
The orange line depicts its performance when (unsuccessfully) attempts to
neutralise our in-distribution trigger. This highlights that the in-distribution
trigger is within the algorithm’s safe subspace and evades the defence.

tion. However, when the environment incorporates our in-
distribution trigger, there is no observed increase in the DRL
agent’s performance (indicated in orange) after undergoing
the sanitisation algorithm’s operation. This means that the
trigger was projected in the safe subspace and the back-
doored agent was able to perceive it. Thus, the defence
failed.

Moreover, we evaluate the impact of varying the number
of dimensions related to the empirical estimation of the safe
subspace, as implemented by the authors, depicted in Figure
3. The results clearly show that changes in the dimensions
do not substantially influence the agent’s performance fol-
lowing the sanitisation phase. Although there is a minor im-
provement in performance after reaching 25,000 dimensions,
there is no definitive proof suggesting further enhancements
in performance for estimated dimensions beyond 28,000,
which is the maximum dimension tested by the authors.
Therefore, Figures 2 and 3 validate our initial hypothesis that
in-distribution triggers which lie within the empirical safe
subspace cannot be effectively neutralised with the proposed
method.

We observed that the sanitisation algorithm’s execution
time spanned several days, surpassing the agent’s training
duration. This indicates the approach’s unsuitability for both
rapid and slow-response scenarios in combating complex
backdoor attacks. The necessity for immediate, effective,
and ideally real-time countermeasures against backdoors in
dynamic environments highlights the urgent need for more
agile and robust solutions. In the next section, we propose
a novel research direction aimed at offering a reliable alter-
native for mitigating elusive policy backdoors.

5. Detection via Neural Activation Space
In our Threat Model (Section 3), we discuss how

victims might not recognize backdoors in targeted attacks
but can observe DRL dynamics through neural activations.
Drawing on [24], [25], which identified distinct neural
activations from backdoor triggers in supervised learning,
we expand these insights to DRL. In contrast, our study
examines the variations in neural activation patterns,
influenced by the reward function, between episodic end
goals and rare, concealed backdoors respectively. The
unique neural activations in the presence of in-distribution
triggers will enable us to identify the neurons linked
to malicious actions, potentially unveiling how specific
neurons activations temporally vary to execute these
actions.

5.1. Experimental Setup
To test if backdoor triggers can be identified in neural

activation space, we employ the Parameterised LavaWorld
environment by Ashcraft et al. [20], an adaptation of the
MiniGrid-LavaCrossingsS9N1-v0 from gym-minigrid [26].
This environment, chosen for its high variability from ran-
domly placed lava ’rivers’ and a square-based design con-
ducive to hiding backdoor triggers, requires the agent to
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Figure 4. The visualisations illustrate our in-distribution trigger in the
MiniGrid Crossings environment. From left to right, the images show: a) the
environment without a trigger, and b) the environment with a “+”shaped
trigger (red box). In (a), the backdoored agent reaches the goal safely,
whereas in (b), it walks into a lava block as the trigger is present.

navigate from start to finish, avoiding a randomly positioned
wall of lava. Unlike MiniGrid-LavaCrossingsS9N1-v0, it
features an extra row of three lava squares, adding com-
plexity. The main lava ’river,’ safe passage, and additional
lava squares vary with each episode, creating a dynamic
challenge for the agent whose receptive field extends 7
squares forward and 3 squares to both sides (Figure 4a).

Following the sanitisation method outlined in Section 4,
we trained two agents using PPO and a Convolutional
Neural Network: one benign and one backdoored, over
60 million frames in 10 parallel environments. The back-
door activates when extra lava squares align with the main
lava ’river’ to form a cross, a setup inspired by previous
work [8], [18], [20], with the trigger mimicking the real
goal’s reward but in a short-term context (Figure 4b). Post-
training evaluation on 1,000 trigger-free episodes showed
approximately 95% accuracy for both agents. Analysis of
the Actor network’s 256 neurons during 1,000 goal-visible
episodes (3682 samples) and 1,000 trigger episodes (3219
samples) then followed.

5.2. Results
Figure 5 illustrates the notable variance in neural acti-

vations between episodes with the goal and with the trigger.
A significant disparity is observed, particularly in specific
neurons. The Mann-Whitney U-test confirms the statistical
significance of these differences (refer to Figures 9 and
10 in the Appendix). This evidence suggests potential for
distinguishing benign from malicious activations, guiding
the development of a trigger detection mechanism. Further
insights can be found in the Appendix (Figures 11 and 12).

6. Trigger Classifier
Based on our findings, we now design a simple classifier

to detect the presence of triggers. As explained in Section
3, the defender does not have access to any information
about the triggers. Hence, we need our classifier trained
only on episodes from the clean environment. We set up
nine straightforward classifiers based on the activation levels
of 64 neurons from 10,000 episodes without triggers. These
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* * * * * * * * * * * * * * * *
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Figure 5. The 16x16 heatmap shows variations in PPO’s actor network
neuron activations between two scenarios: 1) with an in-distribution trigger
visible, and 2) with the goal visible. Darker red signals indicate a stronger
neuron response to the trigger, whereas darker blue signify a stronger
neuron response to the goal. This efficiently demonstrates the fluctuation
in neuron activations due to in-distribution triggers. (”*” denotes statistical
significance.)
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Figure 6. The figure presents the F1 Scores for all 9 simple classifiers
across various thresholds, demonstrating the potential to detect backdoors
via neuron activations by leveraging the distribution of activation levels
in the PPO actor network. This indicates that analysing neuron activation
patterns can be an effective method for identifying backdoors.

classifiers use a mix of high (99.5, 99, and 98 percentiles)
and low (0.5, 1, and 2 percentiles) quantiles from these
activation levels as a reference point to spot triggers. Addi-
tionally, we apply 80 different threshold levels (from 1 to
80) across these classifiers to decide whether an episode was
normal or had been tampered with by a trigger. For instance,
if the number of neuron activations that fell outside our
set quantile thresholds exceeded a certain threshold level,
the detector would classify that episode as abnormal (i.e., a
trigger is present). A threshold of 80 for a network of 256
neurons was selected to understand the trade-off between
true positives and false positives.

As illustrated in Figure 6, the most effective detector,
specifically those configured with thresholds at the 2/98%
quantiles, achieved an F1 score of 0.94. This indicates a
commendable balance between precision and recall, high-
lighting its efficiency in identifying true positives without
excessively misclassifying negatives. Remarkably, the clas-
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Figure 7. The figure presents the ROC Curves for all 9 simple classifiers
across various thresholds. The use of thresholds allow us to assess the
true positive and false positive rates for all simple detectors. The detectors
showed AUC values as high as 0.98 without the consideration of episodic
temporality in the detectors.

sifier with thresholds set at 2%/98% quantiles demonstrated
a true positive rate of 92% and false positive rate of 3%
reinforcing its effectiveness. This is further proven in the
Appendix’s Figure 10 and 11 which shows the distribution
of neuron activations in the presence of triggers and goals
respectively.

Figure 7 reveals that the majority of our thresholding
classifiers exhibit an Area Under the Curve (AUC) greater
than 0.95, with the highest recorded AUC value at 0.98.
This performance metric underscores the capability of these
classifiers to reliably detect in-distribution backdoor triggers
across a significant majority of episodes in which such trig-
gers are present. Notably, this detection efficacy is achieved
using a very inexpensive classifier (with minimal compu-
tational overhead) and could be further improved using
more advanced algorithms depending on the computational
capacity available.

7. Related Work

Liu et al [24] and Shafahi et al [27] demonstrate LSTM
backdoors that redirect agents upon trigger activation, reduc-
ing performance. Kiourti et al [18] present TrojDRL, show-
ing DRL’s vulnerability to backdoors without compromising
clean task performance by altering observations via a man-
in-the-middle attack, leading to changed agent behaviour
upon trigger. Gunn et al [16] and Yu et al [28] explore
RL poisoning in application-specific scenarios, showing
adversarial perturbations during training slow agent. The
latter achieves this by using temporal DRL attacks Wang
et al [23] present multi-agent RL backdoor attacks, signif-
icantly decreasing a victim’s win rate from 37% to 17%
through competitor-triggered backdoors. Chen et al [29]
and Foley et al [17] propose a DRL poisoning strategy
that causes misbehaviour in specific states by altering some
training observations, the latter publication proven effective
in Atari game tests. Rakhsha et al [30] create an optimisa-
tion framework for stealthy attacks in RL, showing target

policy imposition on victims. Ashcraft et al [20] develops
an in-distribution DRL backdoor models, corrupting policies
during inference. The TrojAI challenge by US IARPA and
NIST (https://pages.nist.gov/trojai/docs/index.html) aims to
advance DRL backdoor defence, using DRL agents on
MiniGrid-LavaCrossingS9N1-v0 with in-distribution trig-
gers and 300 models for training and testing. Participants de-
velop backdoor detectors, but the intensive training demand
restricts its practicality in critical sectors like autonomous
driving, where numerous model iterations are beyond the
affordability of end-user resources.

Despite the criticality of the problem, limited works have
proposed solutions for detecting or mitigating backdoors for
DRL agents. As discussed in Section 4, Bharti et al. [8]
presented a defence algorithm based on a wrapper method
around the backdoor policy that provides performance guar-
antees against all subspace trigger based adversaries. How-
ever, as we demonstrate in Section 4 their solution does
not generalise to adversaries using in-distribution triggers.
Acharya et al. [31] introduced an attribution analysis-based
algorithm to detect DRL backdoors, exploiting advantage
prediction sensitivities to observation changes. They used
Jacobian matrices to identify trigger-affected inputs, show-
ing success in IARPA’s TrojAI (rl-lavaworld-july2023 and
randomised-lavaworld-aug2023). However, the approach
lacks practicality due to the extensive training requirement
of the challenge. Guo et al. [32] introduced PolicyCleanse
for backdoor detection and mitigation in Competitive RL
(CRL), using reward reversal to identify and counteract
opponent-triggered backdoors. It generates a Trojan policy
to mimic potential triggers, reverses the reward function, and
evaluates the target for malicious behaviour. Triggers are
mitigated by training the victim with benign and pseudo-
trigger episodes. Despite its effectiveness, PolicyCleanse’s
high computational needs and specificity to CRL environ-
ments constrain its wider applicability, especially for real-
time policy detection and scenarios involving human inter-
action.

8. Conclusions & Future Work

In this work, we evaluate the effectiveness of existing
DRL backdoor mitigation strategies, revealing their limited
generalizability against sophisticated threats. Our investiga-
tion into neural activation spaces for identifying harmful
triggers introduces a precise, efficient classifier, marking
a novel path in backdoor detection research. This opens
avenues for future work to extend these insights across
different algorithms and settings, and to examine classifiers
that assess neural activation patterns temporally.
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Appendix

1. Statistical Analysis of Activation Patterns

The data depicted in the figures provides an insight into the dynamics of neural activation within the actor network of
Deep Reinforcement Learning (DRL) agents, particularly under varying environmental conditions. Figure 8 offers a visual
comparison between the neural activation patterns in triggered versus non-triggered environments. This distinction is crucial,
as it highlights the impact that in-distribution triggers have on the neural activation space of the agent. By examining
the intensity and distribution of neural activations, we observe how certain neurons become more active (positively and
negatively) in the presence of environmental triggers compared to standard conditions.

Max Values Across All Files - Non-Trigger Episodes

Min Values Across All Files - Non-Trigger Episodes

Average Values Across All Files - Non-Trigger Episodes

20

10

0

10

20

Activation Level

20

10

0

10

20

Activation Level

20

10

0

10

20

Activation Level

Max Values Across All Files - Trigger Episodes

Min Values Across All Files - Trigger Episodes

Average Values Across All Files - Trigger Episodes

20

10

0

10

20

Activation Level

20

10

0

10

20

Activation Level

20

10

0

10

20

Activation Level

Figure 8. Heatmap of average neuron activations a) in a triggered environment b) in a non-triggered environment. The figure allows us to differentiate
between triggered and non-triggered environments through the overall episodic neural activations. This allows us to create a base case that signifies how
the presence of a trigger affects the agent through the neural activation space.

Furthering this observation, Figure 9 delves deeper by contrasting the neural activation levels when a trigger is visible
within the agent’s field of view against when a goal object appears. The heatmaps derived from these scenarios showing the
differences in neuron activation, where the presence of a trigger suggests a stronger neural response compared to the goal
in the field of view. This differential activation pattern shows the influence of in-distribution triggers on the DRL agent’s
neural architecture, providing a foundation for understanding how triggers overall can manipulate agent behaviour through
the neural activation space.
Together, these visualisations not only allow for a detailed analysis of the agent’s response to different environmental stimuli
but also establish a baseline understanding of how triggers can distinctly alter neural activation patterns. This knowledge
paves the way for further exploration into the mechanisms through which DRL agents can be influenced or manipulated,
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Figure 9. Heatmaps of average neuron activations when a) when the goal is in the field of view (in a non-triggered environment) and b) The trigger is in
the field of view (in a triggered environment). Specific neuron activation values are greater during the presence of a trigger as compared to the presence
of a goal, indicating the significance of the presence of triggers within the neural activation space.
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highlighting the importance of neural activation analysis in identifying and understanding the impact of in-distribution of
triggers on agent behaviour.

2. Distribution of Neuron Activations

Figure 10 delves deeper into the specific neuron activation distribution of neurons with higher activation levels shown
in Figure 9. On the other hand, Figure 11 focuses on neurons that were not considered statistically significant within
the two scenario’s presented in Figure 9. From Figure 10 It can be observed that specific neuron, when compared in the
two scenarios, Trigger in field of view and Goal in field of view, show significant differences in their neuron activations
distribution. Backing our hypothesis that the neuronal activation space can be utilised within DRL to detect elusive backdoors
like in-distribution triggers.

40 30 20 10 0
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Histogram of Goal and Trigger Activations for Neuron 26
Goal in Field of View
Trigger in Field of View

5 0 5 10 15 20 25
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Histogram of Goal and Trigger Activations for Neuron 168
Goal in Field of View
Trigger in Field of View

0 5 10 15 20 25 30 35
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Histogram of Goal and Trigger Activations for Neuron 170
Goal in Field of View
Trigger in Field of View

0 5 10 15 20 25 30
Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Histogram of Goal and Trigger Activations for Neuron 217
Goal in Field of View
Trigger in Field of View

Figure 10. Distribution of neuron activations levels for the most affected neurons within of PPO’s actor network in MiniGrid when compared within
scenarios including a) Goal in Field of View and b) Trigger in Field of View. The distribution suggests significant differences in the specific neural
activations in the presence of a trigger in the field of view, as compared to when goal is in field of view. This is further backed up by the distributions of
both being statistically significant to each other.

Figure 11 explores the neuron activation levels of the neurons that were not statistically significant within the neuron
activation space. It can be observed that the neuron activation distribution and medians of such neurons is similar in both,
goal in field of view and trigger in field of view. This backs why Mann-Whitney U-test did not classify the selected neurons
as statistically significant.
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Figure 11. Distribution of neuron activations levels for the least affected non-statistically significant neurons within of PPO’s actor network in MiniGrid
when compared within scenarios including a) Goal in Field of View and b) Trigger in Field of View. The distribution and medians of both scenarios
suggest that the particular neurons are not affected by the presence of the trigger in the field of view, as compared to when goal is in field of view. This
is further backed up by the Mann-Whitney U-test, which calculated the neurons activations to not be statistically significant

Figure 12 looks at the neuron activation level distribution of the neurons that did not show high levels of activation
differences within the two scenarios. However, they still suggested statistical significance according to the Mann-Whitney
U-test. As can be observed, it could be because the distribution levels and median slightly differ within the two scenarios.

In all, it can be observed that the scenario, Trigger in field of view, shows a larger distribution of neuron activation levels
when compared to the Goal in field of view scenario. This discovery could also act as a point of research to develop more
complex detection methods against a variety of different backdoors.
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Figure 12. Distribution of neuron activations levels for the least affected statistically significant neurons within of PPO’s actor network in MiniGrid when
compared within scenarios including a) Goal in Field of View and b) Trigger in Field of View. The distribution and medians of both scenarios suggest
that the particular neurons are slightly affected by the presence of the trigger in the field of view, as compared to when goal is in field of view. This is
further backed up by the Mann-Whitney U-test, which calculated the neurons activations to be statistically significant
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