
Canaries and Whistles: Resilient Drone Communication
Networks with (or without) Deep Reinforcement Learning

Chris Hicks
c.hicks@turing.ac.uk

The Alan Turing Institute

Vasilis Mavroudis
vmavroudis@turing.ac.uk
The Alan Turing Institute

Myles Foley
m.foley20@imperial.ac.uk
Imperial College London

Thomas Davies
tdavies@turing.ac.uk

The Alan Turing Institute

Kate Highnam
k.highnam19@imperial.ac.uk
The Alan Turing Institute

Tim Watson
tim.watson@turing.ac.uk
The Alan Turing Institute

ABSTRACT
Communication networks able to withstand hostile environments
are critically important for disaster relief operations. In this pa-
per, we consider a challenging scenario where drones have been
compromised in the supply chain, during their manufacture, and
harbour malicious software capable of wide-ranging and infectious
disruption. We investigate multi-agent deep reinforcement learning
as a tool for learning defensive strategies that maximise communi-
cations bandwidth despite continual adversarial interference. Using
a public challenge for learning network resilience strategies, we
propose a state-of-the-art expert technique and study its superior-
ity over deep reinforcement learning agents. Correspondingly, we
identify three specific methods for improving the performance of
our learning-based agents: (1) ensuring each observation contains
the necessary information, (2) using expert agents to provide a
curriculum for learning, and (3) paying close attention to reward.
We apply our methods and present a new mixed strategy enabling
expert and learning-based agents to work together and improve on
all prior results.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Dis-
tributed systems security; Network security.

KEYWORDS
resilient systems, distributed systems, deep reinforcement learning

ACM Reference Format:
Chris Hicks, Vasilis Mavroudis, Myles Foley, Thomas Davies, Kate Highnam,
and Tim Watson. 2023. Canaries and Whistles: Resilient Drone Commu-
nication Networks with (or without) Deep Reinforcement Learning. In
Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security
(AISec ’23), November 30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3605764.3623986

This work is licensed under a Creative Commons Attribution
International 4.0 License.

AISec ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0260-0/23/11.
https://doi.org/10.1145/3605764.3623986

1 INTRODUCTION
Drones, and other types of unmanned aerial vehicle, are increas-
ingly utilised for disaster relief efforts where they can help to co-
ordinate efforts on the ground by providing real-time surveillance,
ad-hoc communication networks, and the delivery of supplies to
remote areas [22]. Drones are low-cost, widely available and can
operate in hostile and warlike environments with degraded or in-
operable infrastructure. When multiple drones are available, con-
necting them together wirelessly can provide an ad-hoc commu-
nication network with enhanced coverage, resilience and safety.
Unfortunately, as with embedded systems at large [14, 65], nu-
merous commercial and military drones are vulnerable to cyber
attacks [10, 15, 17, 35, 42, 66]. Even if a drone is secure by design,
malware can attack the supply chain to compromise the function-
ality of a specific component [8]. Drone vulnerabilities have been
exploited to provide location tracking [29], botnet attacks [41], sen-
sor tampering [17, 66] and covert data exfiltration [55]. Ultimately,
many drone vulnerabilities give complete control to the adversary,
allowing them to interfere with the drone as they please.

Given the ubiquity of software vulnerabilities in drone systems,
it is essential to anticipate their compromise during operation. If
drone malware could be actively impeded during operation, then
despite the inevitable attacks, an ad-hoc network of drones with
sufficient redundancy could still provide valuable services. Cur-
rent mitigations for drone vulnerabilities include regular operating
system updates, intrusion detection systems (IDS), fine-grained
circuit analysis, and remote software attestation [35]. However,
these defences are not sufficient in many cases. Operating system
updates often take several weeks, at best, to include patches for the
latest exploits. IDS can help detect adversaries but, in addition to
being computationally expensive, are usually limited to observing
network traffic without context and can negatively impact network
latency. Fine-grained circuit analysis can be defeated [23] and re-
mote software attestation depends, in addition to being certain that
attested software is secure, on managing the multiple drone autho-
risations for swarm-based solutions. None of the current defences
can actively impede malware from affecting drones, maintaining
crucial ad-hoc communication networks for disaster relief.

Autonomous cyber defence (ACD) is a class of solution meth-
ods, models and intelligent agents that actively respond to cyber
attacks without the need for human intervention. Intelligent agents
trained using reinforcement learning (RL) have, in particular, shown
great potential for autonomously defending computer networks
and systems from attack [18, 20, 49]. ACD is particularly valuable

ar
X

iv
:2

31
2.

04
94

0v
1 

 [
cs

.C
R

] 
 8

 D
ec

 2
02

3

https://doi.org/10.1145/3605764.3623986
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605764.3623986


AISec ’23, November 30, 2023, Copenhagen, Denmark Chris Hicks et al.

when, as in the case of a disaster relief, there is a lack of human
experts available to defend systems against an adversary. People
on the ground dealing with the situation, emergency responders
and regular civilians, are unlikely to have the skills, resources or
time needed to patch vulnerable drones.

In this paper we evaluate multi-agent RL (MARL) for defending
ad-hoc communication networks against malware attacks. Using a
public challenge and environment for ACD blue teaming, we first
propose a state-of-the-art expert agent, Canary. Next, we show that
RL applied in the standard setting yields unsatisfactory results. We
identify a framework for bridging the gap in performance, apply our
methods and demonstrate the potential of learning-based policies
in actively defending ad-hoc drone networks.

2 BACKGROUND AND MOTIVATION
2.1 Reinforcement Learning (RL)
RL is about learning how to interact with an unknown environment
to maximise a numerical reward signal. RL is characterised by trial-
and-error, in which the learner discovers through repeated inter-
action which actions lead to success, and delayed reward, whereby
actions may affect rewards far in the future. An important prop-
erty of RL is that goals are defined only by specifying the reward
function. There is no need to define exactly how to reach the goal.
RL provides a mechanism to distribute the long-term rewards of
goal accomplishment among the many actions that contributed to
success.

Figure 1: The sequential agent-environment interaction for-
malisation of RL.

As shown in Figure 1, RL is characterised by a sequential interac-
tion between an agent and an environment. At each time step 𝑡 the
agent observes the state 𝑠𝑡 , the reward 𝑟𝑡 , and chooses an action 𝑎𝑡 .
The environment is formalised as an incompletely-known Markov
decision process (MDP) i.e., future states 𝑠𝑡+1 are independent of
past states 𝑠0, . . . , 𝑠𝑡−1 given the present state 𝑠𝑡 . Learning from in-
teraction takes place over episodes, each comprising multiple time
steps. Where𝐻 is the maximum number of time steps in an episode,
the agent uses trajectories 𝜏 = {(𝑠0, 𝑎0, 𝑟0), . . . , (𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 )} to
learn a policy 𝜋 which is a map from the state space 𝑆 to the action
space 𝐴.

Recently, RL algorithms have demonstrated human and super-
human level performances including beating world champions at
Chess and Go [45, 46], mastering Stratego [39] and discovering
faster sorting algorithms [34]. These advances have been made
possible by DRL, in which the policy of an RL agent is represented
by a deep neural network [36, 43]. DRL enables agents to handle
large state spaces by generalising from the trajectories seen during
training to rarely or never-before seen states. In addition, neural
function approximation relaxes the MDP environment requirement

of early tabular RL algorithms [60] to a partially observable MDP
(POMDP) [50]. Thismeans that DRL agents can learn policies in non-
Markovian environments by parameterising only the Markovian
variables [61]. Even so, performance is diminished in proportion to
the lack of Markovian variables and state representations must be
carefully constructed to include all of the information needed to
properly inform each action.

When RL is extended to include multiple agents it is termed
multi-agent RL (MARL). MARL enables a range of cooperative,
competitive and mixed strategies to emerge between decentralised
autonomous agents [6]. In large problem spaces MARL also permits
divide-and-conquer strategies based on specialised agents handling
specific sub-problems. Despite the advantages of MARL, it is also
considerably more challenging than the single-agent setting. Multi-
ple agents learning simultaneously present a much more difficult
non-stationary learning problem [61]. In addition, assigning long-
term rewards to specific actions is greatly frustrated when multiple
agents contribute to, and detract from, goal accomplishment. The
more agents coexist in a MARL environment, the more intractable
it is from a learning standpoint [63].

2.2 Curriculum Learning
Curriculum learning (CL) [9] is an approach that can help agents
learn more effectively by first training on simpler tasks and then
gradually increasing the complexity. The main idea is to contin-
uously adjust the difficulty of the task to just beyond the current
capabilities of each agent, allowing them to learn new skills gradu-
ally. CL is a useful strategy for overcoming the specific difficulties
of MARL, including non-stationary learning, and even emerges im-
plicitly in certain cooperative and competitive settings [6, 45, 59].

2.3 Autonomous Cyber Defence
Motivated by the growing shortfall in cyber skills, scale and speed
of response that is required to defend modern digital infrastructure
from cyber attacks, ACD concerns the development of autonomous
agents that actively defend computer networks and systemswithout
the need for human intervention. Once threats have been detected
and identified, ACD systems take actions to protect against, re-
spond to, and recover from attacks. ACD systems can also deploy
countermeasures including decoys, canaries and honeynets to gain
defensive advantages against the adversary [31]. The most recent
advances in ACD have emerged from the application of state-of-
the-art DRL methods [7, 13, 18, 20, 25, 26].

An important aspect of the ACD landscape are cyber simulator
environments, i.e, AI gyms [11], that enable autonomous agents to
be trained without the scaling limitations of real systems and net-
works [12]. At least 16 different ACD simulation environments have
been described in the literature, however only Cyber Operations
Research Gym (CybORG) [1, 49] is both open source and designed
specifically for training defensive RL-based agents [56]. CybORG
is an AI gym, and research platform, providing a flexible scenario-
driven environment backed by both simulated and emulated (i.e.,
Amazon Web Services) networks. A number of offensive red agents
are included in CybORG to allow for benchmarking defensive strate-
gies. Significantly, CybORG has hosted three competitive public



Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning AISec ’23, November 30, 2023, Copenhagen, Denmark

challenges which have motivated the development of autonomous
agents by the wider academic community [5, 18, 20, 62].

Despite the apparent need for MARL approaches to scale ACD
solutions to the intractably large observation spaces of real and
internet-scale computer networks, only two cyber simulation envi-
ronments currently support MARL [1, 30]. Of these, only the latest
CybORG challenge [24] is defence focused.

3 ATTACKER MODEL
We consider a strong, yet realistic [54], adversary who has compro-
mised the supply chain of a drone manufacturer. The adversary has
covertly placed malware on the firmware installed onto every drone.
The malware lays dormant until such a time as it is activated by
the adversary, whereupon it launches a variety of harmful attacks
including passively listening in on communication and actively
compromising neighbouring drones. These drones have already
been deployed and cannot quickly be replaced. The drones must
be used as-is, despite having compromised firmware, to provide
a temporary ad-hoc communication network for people on the
ground. Whilst being unable to fully remove the malware, we will
investigate the possibility of providing an active defence such that
the network can still provide communications bandwidth.

4 ENVIRONMENT
To study resilient ad-hoc communication networks from the per-
spective of malware compromised drones, we use the CybORG AI
gym and its latest public competition [24]. The third CAGE chal-
lenge, hereafter referred to as “the CAGE challenge” for brevity,
tasks competitors with developing an autonomous defensive ca-
pability for an ad-hoc network of drones. The drones have been
compromised during their manufacturing process and harbour mal-
ware that cannot easily be removed. Despite this, a communication
network is desperately needed and the drones must be put into
service. The CAGE challenge provides a MARL research environ-
ment for determining to what extent communication bandwidth
can be maintained, by an ad-hoc network of drones, in the face of
a disruptive malware attack.

The CAGE challenge uses the CybORG environment [1] to de-
fine a specific drone swarm scenario illustrated in Figure 2. The
scenario comprises 18 drone hosts that are perpetually at risk from
a malware that lies dormant in their firmware. The drones occupy
a 100 × 100 two-dimensional space, have a communication radius
of 30, and a maximum bandwidth of 100. At discrete time steps,
a defensive blue team, an offensive red team and a neutral green
team take turns to accomplish their objectives. The CAGE challenge
provides both red and green teams as part of the environment, po-
sitioning for researchers the task of controlling the defensive blue
team. The green team has one agent for each drone and is used
to simulate the demand for communication bandwidth by opera-
tives on the ground. Meanwhile the blue and red teams compete to
control the drones, meaning a total of 18 agents are active across
both teams at any moment. The motion of each drone, hence the
overall network topology, is controlled by a randomised swarming
algorithm unaffected by any of the teams. This ensures the task of
actively mitigating malware attacks using software command and
control (C2) tactics can be researched as an independent variable.

Reward Event
−1 Comms. blocked
−1 Comms. intercepted
−1 Comms. dropped due to

insufficient bandwidth
−1 No comms. route can be

established
−(18 ∗ (𝑡 − 500)) Complete compromise

Table 1: The CAGE challenge reward function.

The development of RL agents for this purpose is explicitly
encouraged by the reward function, specified in Table 1, that is
returned at every time step through the standard AI gym inter-
face [11]. The reward function is also used to evaluate and bench-
mark the performance of defensive agents by averaging their scores
over 1000 episodes, each up to 500 steps long. The maximum that
can be scored in the CAGE challenge is 0, corresponding to flaw-
less message delivery, and the minimum is −9000, equivalent to all
messages failing for an entire episode. The results for 12 different
approaches from 8 different teams are ranked publicly now that
the challenge has officially closed [24]. Our Canary protocol, which
we introduce in Section 6, currently ranks as the top performing
agent1.

4.1 Drone Platform
Each drone is a simulated embedded Linux system with a wireless
interface that establishes a data link with all neighbouring drones
1Preliminary challenge results correct as of 14th July 2023.

Figure 2: The CAGE Challenge Scenario. Blue and red drones
are controlled by the defensive and offensive teams, respec-
tively. Shaded areas illustrate the (not always) overlapping
radii of each drone’s communication range.



AISec ’23, November 30, 2023, Copenhagen, Denmark Chris Hicks et al.

within communication range. All drones have the same firmware-
level malware installed which, when activated, will passively and
actively disrupt the swarm whilst also spreading to neighboring
drones. To help keep drones secure, they include an Internet Proto-
col (IP) block list and a tool for detecting malicious network activity.
The drones have 8 different actions that are selectively available
to red, blue and green agents. Actions are either local, and act on
the agent’s host drone, or remote, and act on another drone in the
swarm. Remote actions consume bandwidth and each drone has a
maximum of 100 units to spare, per time step, before all additional
actions (and messages) are dropped. To account for stochasticity in
real network attack and defence scenarios, several of the actions
occasionally fail.

In addition to the communication network provided by the drone
network at large, an explicit low-bandwidth broadcast channel
is also provided. At every time step, each drone can broadcast a
16 bit message to all neighbouring systems within range. Since each
drone only benefits from a partial observation of the environment,
inter-drone communication is essential to effectively coordinate a
defensive response.

4.2 Green Team
The CybORG environment uses a green team to simulate the de-
mand for communication bandwidth. At every time step, the green
agent on each drone chooses a random recipient drone from the
swarm and an arbitrary message is sent, consuming 1 unit of band-
width from each drone along the shortest route (as determined by
Dijkstras algorithm [16]). Importantly, noting the reward function
in Table 1, a negative reward is expected regardless of the disruption
caused by malware. Green agents cause negative reward by choos-
ing target drones that are unreachable owing to the randomised
network topology.

4.3 Malware
There is a firmware-level malware on each drone that cannot easily
be removed. Once activated, occurring on a random drone with a 5%
independent probability at each time step, the malware immediately
removes the blue team’s agent and replaces it with a high-privilege
red team agent (controlled by the malware). The activated malware
is able to fully control the drone beginning the same time step.
Until the drone is reclaimed by the blue team, the malware behaves
according to one of 6 different strategies which are chosen, and
switched between, at random.

ExploitRandom. Exploit as many neighbouring drones as possi-
ble. The malware first remotely exploits a neighbouring drone at
random yielding a low-privilege red agent presence on the target.
Remote exploitation is flagged as malicious 50% of the time, inde-
pendently by each host along the route), and also fails 50% of the
time. If the low-privilege red agent session has not been removed
by the next time step (i.e., by the blue agent), then the agent will
escalate privileges to high (and cannot fail). A high privilege red
agent represents complete activation of malware on the target.

ExploitFarthest. This strategy is the same as ExploitRandom.
However, drones are targeted from farthest to nearest.

FloodRandom. Consumes all available bandwidth on the target
drone which is chosen at random from the swarm. This action will
never fail, provided the target is reachable using the drone network
(i.e., is routable and the relevant IP addresses are not blocked). This
action is always flagged as malicious by drones along the route.

FloodFarthest. This strategy is as FloodRandom however target
drones are chosen from farthest to nearest.

BlockRandom. A neighbouring drone within direct communica-
tion range is selected at random and added to the block list. All
subsequent attempts to reach the target via the infected host will
be dropped until either 1. the end of the episode, or 2. a blue agent
resumes control and unblocks the relevant IP address.

Intercept. The malware silently intercepts messages on behalf of
the red team. This strategy is never flagged as malicious and does
not fail.

Every turn that the malware executes one of these strategies,
there is also an approximately 10% chance that the strategy will be
swapped.

4.4 Blue Team
The blue team begins each episode with high privilege control of
all 18 drones. The CybORG environment provides a standard AI
gym interface for training RL agents which, as in Figure 1, includes
an action space, a state space and a reward signal. An additional
PettingZoo [53] wrapper is provided which provides a standard
API for MARL environments.

Action Space. Defensive blue agents can use the following actions.
The RetakeControl, BlockTraffic and AllowTraffic actions are each
parameterised by the IP address of the target (𝑛 = 18), in total
providing an action space of 56 (i.e., 1 + 18 + 18 + 18 + 1).

• RemoveOtherSessions. Remove locally any low privilege red
agent session from the host drone, succeeding 90% of the time.
The agent can observe whether the action succeeded on the next
time step.

• RetakeControl. Removes any red agents on the remote target,
including high privilege, and returns control to the blue team.
This action succeeds with a 75% probability, consumes 10 units
of bandwidth from each drone along the network route, and is
falsely identified as malicious activity 15% of the time.

• BlockTraffic.Adds the target drone to the IP block list, blocking
all subsequent traffic until either 1. the end of the episode, or 2.
a blue agent unblocks the relevant IP address.

• AllowTraffic. Removes a specific drone IP address from the
block list.

• Sleep.Wait silently until this turn is over.

In addition to these actions, each drone can also explicitly broad-
cast a 16 bit message to all neighbouring drones within immediate
communication range. It is possible to include the full message space
in the action space, although this would result in an extremely large
action space of 65592 (i.e., 56 + 216).



Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning AISec ’23, November 30, 2023, Copenhagen, Denmark

Index Description Values

0 Was the last action successful?
True: 0
Unknown: 1
False: 2

1 : 18 Block list. Index 𝑖 + 1→ drone 𝑖 Unblocked: 0
Blocked: 1

19 Malicious process on host False: 0
True: 1

20 : 38 Malicious network events list
Index 20 + 𝑖 → drone 𝑖

None: 0
1 event: 1
2 events: 2

39 Host 𝑥 position 0 ≤ 𝑥 ≤ 100

40 Host 𝑦 position 0 ≤ 𝑥 ≤ 100

41 : 108 For each neighbouring drone, a
tuple (𝑖𝑑𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑠𝑖 ) specifying the
drone ID 𝑖𝑑𝑖 , coordinates (𝑥𝑖 , 𝑦𝑖 )
and number of sessions 𝑠𝑖 .

0 ≤ 𝑥 ≤ 100

109 : 381 (Optional) A sequence of 16 bit mes-
sages from neighbouring drones.

{0, 1}16×17

Table 2: The observation space provided to blue agents by the
standard CAGE challenge gym wrapper.

State Space. Blue agents partially observe the state of the environ-
ment with decreasing perception as distance from the host increases.
Locally, blue agents can observe whether the previous action was
successful, the contents of the block list, the position of the drone
and whether any malicious activity has been detected. Within their
communication range, blue agents can also observe the location of
neighbouring drones and how many sessions (agents) their host
has. Full details of the state space provided by the standard AI gym
wrapper are shown in Table 2.

5 BASELINE
Before presenting our expert and MARL based agents for resilient
communication networks, we motivate the need with a baseline
evaluation of the CAGE challenge problem. In other words,

How difficult is the CAGE challenge?

Green Agent Noise. The reward function shown in Table 1 only
includes negatives, so the maximum possible score is trivially zero.
However, because communicating green agents choose recipient
drones at random, these choices include unroutable destinations and
incur a negative reward. To improve the upper bound on maximum
score we evaluated the green agent in the CAGE challenge scenario
but with malware completely disabled. Over 1000 episodes, the
standard evaluation size, green agents alone induce an average
score of −355.3 with a standard deviation of 253.2.

A Sleepy Defence. The trivial worst-case score is −9000. To im-
prove our bound on the minimum score we should deem interesting,

we evaluate a team of blue agents who simply use the Sleep action.
This provides no defence whatsoever and allows us to quantify the
damage an unchecked malware is capable of. Over 1000 episodes,
red and green agents with no defence result in an average score of
−8292.1 with standard deviation 432.2.

Basic Strategies To further improve our bounds for a noteworthy
defence, we evaluate the four basic expert agents included in the
CAGE challenge source code. Once again we report the average
score 𝜇 and standard deviation 𝜎 over 1000 episodes.

• RemoveBlueDrone, 𝜇 = −7396.8, 𝜎 = 599.0.
This agent always uses the RemoveOtherSessions action, trying
to remove low-privilege red agents before they can escalate
further.

• RetakeBlueDrone, 𝜇 = −8309.7, 𝜎 = 409.0.
This agent always uses the RetakeControl action on a random
target from the swarm. This will restore blue agents on some
compromised drones.

• AdvancedRetakeBlueDrone, 𝜇 = −8087.4, 𝜎 = 592.8.
Uses RetakeControl if malicious activity is detected on a neigh-
bour, otherwise uses RemoveOtherSessions. This combines the
previous two approaches and conserves bandwidth.

• AdvancedBlockBlueDrone, 𝜇 = −8312.2, 𝜎 = 419.0.
As AdvancedRetakeBlueDrone except BlockTraffic is used on
the target with suspected malicious activity instead of Retake-
Control.

Proximal Policy Optimisation (PPO) As our final baseline, we
straightforwardly (i.e., with no changes to the environment) apply
PPO to the CAGE challenge. PPO [43] is an efficient policy gra-
dient [51] algorithm for DRL. PPO offers a comparatively simple
implementation, helping to solve a broad range of difficult prob-
lems including competitive e-sports [38], emergent tool use [6] and
microprocessor side-channel attack discovery [33]. In ACD, PPO
has been used to successfully defend enterprise networks includ-
ing top performances in the first two CAGE challenges [18, 27].
Furthermore, multi-agent PPO (MAPPO) achieves state-of-the-art
performances in cooperative multi-agent environments [64].

Taking standard parameters from the literature [4], we use a
fully connected neural architecture of width 256 and depth 2 with
ReLU [21] activation between each layer. We train two models, first
using the standard standard state space from Table 2 and, second
using the explicit 16 bit communication channel to broadcast the
action selected by each agent2. The second experiment significantly
increases the model size, increasing the state space from 109 to
381 and the action space from 56 to 896. We evaluate the best
checkpoints from both models after training each for 25 million
time steps. The average model scores over 1000 episodes, alongside
the other baselines, are shown in Table 3.

6 CANARIES ANDWHISTLES
The results in the previous section highlight the importance of
explicit communication and the favourable performance of even
simplistic expert agents. When explicit communication is neglected,

2Using the AgentCommsPettingZooParallelWrapper included in CybORG



AISec ’23, November 30, 2023, Copenhagen, Denmark Chris Hicks et al.

Baseline method Avg. reward Std. dev.
Sleep −8292.1 432.1

RemoveBlueDrone −7396.8 599.0

RetakeBlueDrone −8309.7 409.0

AdvancedRetakeBlueDrone −8087.4 592.8

AdvancedBlockBlueDrone −8312.2 419.0

PPO −7617.8 651.3

PPO with explicit comms. −6745.3 945.4

Table 3: Baseline scores in the CAGE challenge.

PPO fails to outperform a basic approach based on greedily prevent-
ing privilege escalation on the local host (i.e., the RemoveBlueDrone
method). Building on this insight, and to provide a state-of-the-art
benchmark for the CAGE challenge, we developed a new expert
blue agent that utilises a system of canaries and whistles to actively
mitigate drone malware. Our Canaries and Whistles (CW) agent,
described in Algorithm 1, is based on an explicit communication
protocol that allows blue agents to keep track of neighbouring
drones. Every time step that a host drone is not compromised, the
blue agent broadcasts a canary message containing a unique iden-
tity number (UID). Meanwhile, blue agents also keep track of the
canaries they receive at each step. Once a drone becomes com-
promised, its blue agent will be displaced by the red team and it
will cease broadcasting canaries. Immediately, neighbouring drones
still controlled by the blue team notice the missing Canary and
apply a strategy to mitigate the malware. In addition, blue agents
that detect a compromised neighbour become “whistleblowers” and
broadcast the infected drone’s UID alongside the host’s own. Whis-
tle messages are subsequently spread throughout the swarm by
way of re-broadcasting.

Our CW agent was designed by domain experts to tackle this
challenge specifically. A major determining factor in the design is
the 16 bit limit applied to explicit drone messages. However, this is
enough to encode two drone UIDs and a bit to distinguish between
original and re-broadcast whistles. Indeed, 5 bits remain unused and
could be used to enhance the algorithm further. The PAD and UNPAD
algorithms used to encode and decode messages, respectively, can
be found in Appendix A. Over 1000 episodes, the CWagent averages
a score of −1577.7 with a standard deviation of 800.4. Based on the
CAGE challenge competition phase [24], which is now closed, the
CW agent provides a state-of-the-art performance.

7 JOINING THE OPERA
Inspired by the performance of our CW agent we experimentally
investigate the gap between straightforward PPO, PPOwith explicit
communication, and the CWagent.We identify three improvements
that, when combined, outperform the CW agent alone and establish
a new state-of-the-art result. Specifically 1) addressing limitations
in the CybORG observation space, 2) a CL method determined by
the finding that it’s easier to learn from “joining the opera” (i.e., join

Algorithm 1: Canaries and Whistles Agent
Args :dUID, position
𝑡 ← −1, neighbours← ∅, to-fix← ∅
while episode is not done do

/* For each time step in the episode */

𝑡 ← 𝑡 + 1
if this drone is infected then

/* Blow whistle on self */

msg← PAD(0, 0, dUID)
action← RemoveOtherSessions
return msg, action

if 𝑡 > 1 and position has changed then
position← new position
neighbours← ∅

else
for each𝑚 in {received messages} do

/* Parse explicit messages */

𝑚canary,𝑚ovheard,𝑚whistle ← UNPAD(𝑚)
neighbours[𝑚canary] = 𝑡

if dUID ≠𝑚canary ∧𝑚ovheard = 1 then
/* Notified of infected drone */

if to-fix[𝑚whistle] = ∅ then
to-fix[𝑚whistle] ← “block”

overheard← 0
for each id in {neighbours} do

/* Check canaries */

if neighbours[id] = 𝑡 − 1 then
/* Infected neighbour detected */

to-fix[id] ← “block”
whistle← id
overheard← 1

if to-fix ≠ ∅ then
/* Try to repair neighbouring drone */

𝑡𝐼𝐷
$←− {to-fix}

if to-fix[𝑡𝐼𝐷 ] = “block” then
rnd← {0.0 ≤ R ≤ 1.0}
if rnd ≤ 0.225 then

to-fix[canary] ← “allow”
action← RetakeControl

else
to-fix[canary] ← “retake”
action← BlockTraffic

if to-fix[𝑡𝐼𝐷 ] = “retake” then
to-fix[canary] ← “allow”
action← RetakeControl

if to-fix[𝑡𝐼𝐷 ] = “allow” then
to-fix[canary] ← ∅
action← AllowTraffic

msg← PAD(dUID, overheard,whistle)
return action, msg

/* If no neighbours are infected then greedily

prevent local privilege escalation */

action← RemoveOtherSessions
return action, msg



Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning AISec ’23, November 30, 2023, Copenhagen, Denmark

the team of CW agents) than starting from scratch, and 3) defining
a denoised reward function for optimised learning.

7.1 Observation Space
The CAGE challenge observation space provided by the CybORG
environment is performance limiting when considering the be-
haviour of our expert CW agents. In particular, CW agents keep
track of neighbouring drones over multiple time steps. This allows
blue agents to keep track of which drones in the swarm could be
compromised and respond accordingly. Considering the observa-
tion space in Table 2, it is not possible for the standard PPO agent
we evaluated in Section 5 to learn the CW strategy. Despite the
ability of deep RL algorithms to tolerate POMDP environments [50],
they cannot parameterise non-Markovian variables. In other words,
whether a drone is currently compromised (and needs blocking or
retaking) is not independent of past observations given the present
state. We address the limitations of the standard observation space
with a new space, shown in Table 4, designed to incorporate the
minimum features needed to learn a CW-like policy.We deliberately
remove redundant variables (e.g., drone 𝑥,𝑦 positions) to improve
learning efficiency, and include new stateful variables that provide a
more Markovian observation. The most significant changes include
providing an estimation of whether a neighbouring drone needs
fixing (based on CW messages which are processed transparently
in the background) and reporting the last action performed on each
specific neighbour.

7.2 An Expert Curriculum
CL is an approach that has been successfully used to master a num-
ber of MARL environments [59], including in combination with

Index Description Values
0 Host Drone UID {0, . . . , 17}

1 Was the last action successful? False: 0
True: 1

2 Last action number {0, . . . , 55}

3 : 20 Last action type on neighbour
Index 𝑖 + 2→ drone 𝑖 UID

RetakeControl: 0
BlockTraffic: 1
AllowTraffic 2

21 Malicious process on host False: 0
True: 1

22 : 39 Block list. Index 𝑖 + 22→ drone 𝑖 Unblocked: 0
Blocked: 1

40 : 57 Neighbour needs fixing
Index 𝑖 + 22→ drone 𝑖 UID

False: 0
True: 1

58 : 330 (Optional) A sequence of 16 bit mes-
sages from neighbouring drones.

{0, 1}16×17

Table 4: The revised observation space designed to allow
learning CW-like policies.

PPO [6, 64]. We identify a CL method, Opera, that allows for a grad-
ual increase in the complexity of the CAGE challenge environment,
helping to mitigate the difficulties (e.g., non-stationary learning
and combinatorial explosion of the action space) associated with
MARL environments. The essential observation is that, with a high-
performing expert agent to hand, DRL agents can be incrementally
introduced to the environment. We begin training just a single DRL
agent, amongst a swarm of CW agents, and then gradually increase
the number of learning-based agents until maximum performance
is reached. For this purpose we create a series of wrappers for the
CybORG environment that allow us to specify an arbitrary mixture
of CW and PPO agents. To prevent bias in our models we ensure
they are hosted randomly every episode, placing different agents
on different drone hosts.

7.3 A denoised reward
The CAGE challenge scoring function includes a negative penalty
for communications that are unroutable. As discussed in Section 5,
this stochastically decreases the maximum agent score based on
the ad-hoc network topology and randomised choosing of mes-
sage recipients. Unfortunately, this directly antagonises DRL-based
approaches which are optimised exclusively on the maximisation
of cumulative reward. This is further exacerbated by the partial
observability of each agent, which additionally obfuscates the rela-
tionship between state, action and reward. To train our new agents
we modify the CybORG environment to distinguish between mes-
sages that are unroutable and those that are blocked, dropped or
intercepted. We then remove the negative reward for unroutable
messages during training (i.e., we still evaluate our models using
the reward in Table 1), providing improved learning.

8 EVALUATION
Here we evaluate the performance of our learning-based PPO poli-
cies, investigate our proposed improvements to the observation
space, scrutinise our mixed Opera method of CL (i.e., combining CW
and PPO agents) and compare the behaviour of our learning-based
agents with their expert collaborators. Our best performing model
overall utilises a 7:11 split of CW:PPO agents. The learning-based
agents are trained using an expert curriculum ranging from 1:17
to 14:4. We also use our improved observation space from Table 4
and the denoised reward strategy. Averaged over 1000 episodes,
our best mixed Opera scores −1487.9 with a standard deviation of
626.1.

8.1 Observation Space
Our proposed observation space allows learning-based agents to
keep track of whether neighbouring drones are likely to be in-
fected with malware. In Figure 3, we compare the learning curves
of the baseline PPO result from Section 5 and our new observation
space from Table 4. In both cases we train a single policy (with
width 256 and depth 2) for all 18 agents simultaneously. Each policy
took approximately 3.5 hours to train on a single machine with a
24-core Intel i9-13900K, 64 GB of memory and a 24GB RTX 4090
GPU. Table 5 shows the corresponding policy scores, indicating
that our changes do indeed improve performance. We believe that



AISec ’23, November 30, 2023, Copenhagen, Denmark Chris Hicks et al.

Figure 3: Comparing the learning performance of baseline
PPO with and without our improved observation space.

significant further score improvements in this setting (i.e., train-
ing 18 learning-based agents simultaneously) are unlikely without
utilising methods for centralised coordination such as centralised
training decentralised execution (CTDE) [64].

Observation Space Avg. reward Std. dev.
As in Table 2 −7617.8 651.3

As in Table 4 −6884.4 845.4

Table 5: Observation-space related score changes.

8.2 Mixed Opera
Our Opera method incrementally introduces learning-based agents
to a population of expert influencers until they learn all of the skills
they need (or are capable of). We evaluate our approach in Figure 5
by calculating the average score as CW agents are incrementally
substituted for their learning-based contemporaries. The policy is
trained iteratively using the expert curriculum method, beginning
with 1 agent and gradually increasing the number to 14. Training
was stopped at this point as beyond 14 performance declined rather
than improved. As a baseline, we also substitute an inactive agent
that takes no actions whatsoever (i.e., the Sleep Agent).

8.3 Policy Analysis
As shown in Figure 4, we investigate the coarse-grained policy
differences between the expert CW agent, the baseline PPO agent
and our mixed Opera agent by counting the actions chosen over

(a) Expert CW agent.

(b) Baseline PPO agent.

(c) Mixed Opera PPO agent.

Figure 4: Action distributions for the CW, baseline PPO and
mixed Opera PPO agents. For normalisation, actions are sam-
pled from a single agent chosen randomly each episode.



Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning AISec ’23, November 30, 2023, Copenhagen, Denmark

Figure 5: The change in average score and standard deviation
as the number of learning-based agents is increased from
1/18 to 18/18.

Reward Avg. reward Std. dev.
Noisy −6770.5 1064.0

Denoised −6884.4 845.4

Table 6: Denoised reward related score changes.

1000 randomised episodes. The CW agent distinctively chooses
RemoveOtherSessions, locally removing low-privilege red agents
placed by neighbouring infected drones, just over 80% of the time.
The remaining actions are distributed more evenly between Retake-
Control, BlockTraffic and AllowTraffic. As the red team’s trojan
maliciously blocks traffic to disrupt communication, AllowTraffic
is chosen more often than BlockTraffic. In comparison, the baseline
PPO agent chooses from the available actions (including the sleep
action which does nothing) with a more equal probability.

9 DISCUSSION
Compared with previous ACD gyms, the third CAGE challenge rep-
resents a substantiallymore challenging learning environment. This
is evident, in addition to the results presented in this paper, from the
challenge leaderboard which currently scores expert agents from
multiple teams significantly higher than any of the learning-based
agents. Nevertheless, multi-agent algorithms are well motivated
for ACD because they can potentially divide and conquer impracti-
cally large action spaces into more manageable sub tasks attended
by specialised agents. It is remarkable however, that the CAGE
challenge has a large number of agents relative to the wider liter-
ature where 20 is usually the maximum (e.g., [47, 58]) and 2-6 is

far more common (e.g., [6]). The only other MARL ACD environ-
ment currently supports a maximum of two agents [30] trained
competitively. Regarding our approaches to MARL in the CybORG
environment, it is notable that we have not applied any approaches
based on a centralised critic. The success of PPO in multi-agent
environments has generally otherwise been based on the CTDE
paradigm [64].

As in the previous twoCAGE challenges, the issue of determining
the optimal score is a difficult one. There currently is no principled
approach to knowing how close various approaches are, leaving
the possibility that significant performance improvements are yet
to be made. Certainly, although it can be understood as resulting
from the impact of drone malware, there is a gap between the
ceiling generated by green agents (as discussed in Section 5) and
the state-of-the-art presented here. Finally, we note that the design
of the CybORG gym could be improved regarding parallelisation. A
major bottleneck in the training and evaluation of our agents is the
need to wait for a single thread to simulate the environment before
returning new observations and rewards to each agent. Multi-agent
AI gyms should ideally be designed with parallelisation to match
the algorithms that will train agents within them.

10 RELATEDWORK
To the best of the authors knowledge no other publications have
applied MARL to the problem of resilient ad-hoc communications
in the presence of malware infected hosts [37]. Indeed, there is
only one other open source MARL environment for ACD beyond
CybORG [30, 56] and both were released only in the last 12 months.

Concerning single-agent RL for ACD, the literature is consider-
ably more established. Foley et al. [18] showed the effectiveness of
hierarchical PPO, based on choosing a specialised sub-agent every
time step, in tackling two differentiated red agents in the first CAGE
challenge. In later work, Foley et al [20] further determine that the
hierarchical DRL supervisor can be replaced with a more effective
bandit-based algorithm for choosing the best agent. In the same
work, the authors also study the explainability of DRL agents for
ACD, apply an ablation study, and calculate SHapley Additive exPla-
nations (SHAP) values [32] to determine the importance of features
in the CybORG environment. There are several recent surveys of au-
tonomous and automated cyber defence [2, 28, 37, 44] including by
Vyas et al. [56] who comprehensively survey the current landscape
of autonomous cyber operations gyms and develop a set of require-
ments they use to evaluate each environment. Beyond CybORG [1],
CyberBattleSim [52] and Yawning Titan (YT) [3] are notable for also
providing open source simulation based environments for attacking
and defending computer networks, respectively. Beyond ACD, the
RL paradigm is increasingly accomplishing remarkable results in
a range of systems security environments including evading hard-
ware trojan detection [23], finding new injection attacks [19, 57],
closed-box malware generation [48], and microprocessor cache-
timing vulnerability discovery [33].

Related to our mixed Opera method of CL, Campbell et al. [13]
propose a curriculum framework for autonomous network defense
using MARL. Yu et al. [64] study the performance of multi-agent
PPO in cooperative environments and discover surprisingly strong
performance that is competitive to conventional off-policy methods.



AISec ’23, November 30, 2023, Copenhagen, Denmark Chris Hicks et al.

Piterbarg et al. [40] study the NeurIPS 2021 NetHack Challenge and
also discover a gap between expert and learning-based approaches.
The authors use different methods based on a hierarchical action
space, neural architecture improvements and imitation learning to
bridge the gap for their agents.

11 CONCLUSION
In this paper we present the full details of our state-of-the-art ex-
pert CW agent for decentralised autonomous malware resilience in
an ad-hoc drone network. We use CW to address some of the defi-
ciencies in prior learning-based agents, identifying three specific
methods for doing so: (1) Providing a (more) Markovian observation
space, (2) implementing CL by gradually increasing the proportion
of learning-based agents, and (3) creating a noise-free reward func-
tion, allowing us to considerably close the gap in performance
between expert and learning-based agents. Finally, we present a
new state-of-the-art result in the third CAGE challenge based on a
mixed Opera of expert and learning-based Canary agents.

In future work we will consider emergent communication and
whether protocols similar to CW could be learned automatically
without the need for an explicit specification. In addition, since red
agents will inevitably try to use our protocols against us, explor-
ing communication learned (e.g., using autocurricula [6]) under
competitive adversarial pressure is a compelling direction. More
broadly in ACD, many open problems remain including improved
methods for coordinating shared situational awareness in decen-
tralised agents; scalable observation spaces able to deal with an
arbitrary number of neighbouring drones, algorithms for lifelong
learning, and robustness for autonomous agents.

ACKNOWLEDGMENTS
Research funded by the Defence Science and Technology Labo-
ratory (Dstl) which is an executive agency of the UK Ministry of
Defence providingworld class expertise and delivering cutting-edge
science and technology for the benefit of the nation and allies. The
research supports the Autonomous Resilient Cyber Defence (ARCD)
project within the Dstl Cyber Defence Enhancement programme.

REFERENCES
[1] 2022. Cyber Operations Research Gym. https://github.com/cage-challenge/

CybORG. Created by Maxwell Standen, David Bowman, Son Hoang, Toby Richer,
Martin Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely, KC C., Natalie
Konschnik, Joshua Collyer.

[2] Amrin Maria Khan Adawadkar and Nilima Kulkarni. 2022. Cyber-Security and
Reinforcement Learning – A Brief Survey. Engineering Applications of Artificial
Intelligence (2022).

[3] Alex Andrew, Sam Spillard, Joshua Collyer, and Neil Dhir. 2022. Developing
Optimal Causal Cyber-Defence Agents via Cyber Security Simulation. InWork-
shop on Machine Learning for Cybersecurity as part of the Proceedings of the 39th
International Conference on Machine Learning (ML4Cyber ’22).

[4] Marcin Andrychowicz, Anton Raichuk, and Others. 2021. What Matters for
On-Policy Deep Actor-Critic Methods? A Large-Scale Study. In International
Conference on Learning Representations (ICLR ’21).

[5] Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina Moskowitz, Harold
Nguyen, Nicole Nichols, Nicole Park, Paul Rachwalski, Frank Rau, AdrianWebster,
and Melody Wolk. 2022. Bridging Automated to Autonomous Cyber Defense:
Foundational Analysis of Tabular Q-Learning. In Proceedings of the 15th ACM
Workshop on Artificial Intelligence and Security (AISec’22).

[6] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. 2020. Emergent Tool Use From Multi-Agent Au-
tocurricula. In International Conference on Learning Representations (ICLR ’20).

[7] Liz Bates, Chris Hicks, and Vasilios Mavroudis. 2023. Reward Shaping for Happier
Autonomous Cyber Security Agents. Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security (AISec ’23), Copenhagen, Denmark (2023).

[8] Sofia Belikovetsky, Mark Yampolskiy, Jinghui Toh, Jacob Gatlin, and Yuval Elovici.
2017. dr0wned – Cyber-Physical Attack with Additive Manufacturing. In 11th
USENIX Workshop on Offensive Technologies (WOOT ’17).

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning (ICML ’09).

[10] Katharina L. Best, Jon Schmid, Shane Tierney, Jalal Awan, Nahom M. Beyene,
Maynard A. Holliday, Raza Khan, and Karen Lee. 2020. How to Analyze the Cyber
Threat from Drones: Background, Analysis Frameworks, and Analysis Tools. Online.
RAND Corporation.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

[12] Anthony Burke. 2020. Robust artificial intelligence for active cyber defence. Online.
The Alan Turing Institute.

[13] Robert G. Campbell, Magdalini Eirinaki, and Younghee Park. 2023. A Curriculum
Framework for Autonomous Network Defense using Multi-agent Reinforcement
Learning. In 2023 Silicon Valley Cybersecurity Conference (SVCC).

[14] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares. In 23rd USENIX
Security Symposium (USENIX Security ’14).

[15] Vishal Dey, Vikramkumar Pudi, Anupam Chattopadhyay, and Yuval Elovici. 2018.
Security Vulnerabilities of Unmanned Aerial Vehicles and Countermeasures: An
Experimental Study. In 17th International Conference on Embedded Systems (VLSID
’18).

[16] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik (1959).

[17] Benjamin C. Fernando, Greg Beams, and Reece Rivera. 2019. Security Analysis of
DJI Phantom 3 Standard. Online. Massachusetts Institute of Technology. https:
//courses.csail.mit.edu/6.857/2016/files/9.pdf

[18] Myles Foley, Chris Hicks, Kate Highnam, and Vasilios Mavroudis. 2022. Au-
tonomous Network Defence Using Reinforcement Learning. In Proceedings of the
2022 ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’22).

[19] Myles Foley and Sergio Maffeis. 2022. Haxss: Hierarchical Reinforcement Learn-
ing for XSS Payload Generation. In 2022 IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). 147–158.
https://doi.org/10.1109/TrustCom56396.2022.00031 ISSN: 2324-9013.

[20] Myles Foley,MiaWang, ZoeM, Chris Hicks, and VasiliosMavroudis. 2022. Inroads
into Autonomous Network Defence using Explained Reinforcement Learning. In
Proceedings of the Conference on Applied Machine Learning in Information Security
(CAMLIS ’22).

[21] Kunihiko Fukushima. 1975. Cognitron: A self-organizing multilayered neural
network. Biological Cybernetics (1975).

[22] Edward J Glantz, Frank E Ritter, Don Gilbreath, Sarah J Stager, Alexandra Anton,
and Rahul Emani. 2020. UAV use in disaster management. In Proceedings of the
17th ISCRAM Conference.

[23] Vasudev Gohil, Hao Guo, Satwik Patnaik, and Jeyavijayan Rajendran. 2022. AT-
TRITION: Attacking Static Hardware Trojan Detection Techniques Using Re-
inforcement Learning. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22).

[24] TTCP CAGE Working Group. 2022. TTCP CAGE Challenge 3. https://github.
com/cage-challenge/cage-challenge-3.

[25] KimHammar and Rolf Stadler. 2020. Finding Effective Security Strategies through
Reinforcement Learning and Self-Play. In 2020 16th International Conference on
Network and Service Management (CNSM ’20).

[26] Yi Han, Benjamin I. P. Rubinstein, Tamas Abraham, et al. 2018. Reinforcement
Learning for Autonomous Defence in Software-Defined Networking. In Decision
and Game Theory for Security.

[27] John Hannay. 2022. CAGE Challenge 2 Winning Submission. PPO + Greedy
Decoys. https://github.com/john-cardiff/-cyborg-cage-2.

[28] Yunhan Huang, Linan Huang, and Quanyan Zhu. 2022. Reinforcement Learning
for feedback-enabled cyber resilience. Annual Reviews in Control (2022).

[29] Andrew J. Kerns, Daniel P. Shepard, Jahshan A. Bhatti, and Todd E. Humphreys.
2014. Unmanned Aircraft Capture and Control Via GPS Spoofing. Journal of
Field Robotics (2014).

[30] Thomas Kunz, Christian Fisher, James La Novara-Gsell, Christopher Nguyen, and
Li Li. 2023. A Multiagent CyberBattleSim for RL Cyber Operation Agents. In 9th
International Conference on Computational Science and Computational Intelligence
(CSCI ’22).

[31] Andrew Lohn, Anna Knack, Ant Burke, and Krystal Jackson. 2023. Autonomous
Cyber Defence. A roadmap from lab to ops. Online. Centre for Emerging Technol-
ogy and Security (CETaS) at The Alan Turing Institute.

[32] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NeurIPS’17).

https://github.com/cage-challenge/CybORG
https://github.com/cage-challenge/CybORG
https://courses.csail.mit.edu/6.857/2016/files/9.pdf
https://courses.csail.mit.edu/6.857/2016/files/9.pdf
https://doi.org/10.1109/TrustCom56396.2022.00031
https://github.com/cage-challenge/cage-challenge-3
https://github.com/cage-challenge/cage-challenge-3
https://github.com/john-cardiff/-cyborg-cage-2


Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning AISec ’23, November 30, 2023, Copenhagen, Denmark

[33] Mulong Luo, Wenjie Xiong, et al. 2023. AutoCAT: Reinforcement Learning for
Automated Exploration of Cache-Timing Attacks. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA).

[34] Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi,
Cosmin Paduraru, Edouard Leurent, et al. 2023. Faster sorting algorithms discov-
ered using deep reinforcement learning. Nature (2023).

[35] Yassine Mekdad, Ahmet Aris, Leonardo Babun, Abdeslam El Fergougui, Mauro
Conti, Riccardo Lazzeretti, and A. Selcuk Uluagac. 2023. A survey on security
and privacy issues of UAVs. Computer Networks (2023).

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2015. Human-level
control through deep reinforcement learning. Nature (2015).

[37] Thanh Thi Nguyen and Vijay Janapa Reddi. 2021. Deep Reinforcement Learning
for Cyber Security. IEEE Transactions on Neural Networks and Learning Systems
(2021).

[38] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
and Others. 2019. Dota 2 with Large Scale Deep Reinforcement Learning.
arXiv:1912.06680

[39] Julien Perolat, Bart De Vylder, et al. 2022. Mastering the Game of Stratego with
Model-Free Multiagent Reinforcement Learning. Science (2022).

[40] Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. 2023. NetHack is Hard to Hack.
arXiv:2305.19240

[41] Theodore Reed, Joseph Geis, and Sven Dietrich. 2011. SkyNET: A 3G-Enabled
Mobile Attack Drone and Stealth Botmaster. In 5th USENIXWorkshop on Offensive
Technologies ((WOOT ’11)).

[42] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on Security
and Privacy (SP).

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347

[44] Mohit Sewak, Sanjay K. Sahay, and Hemant Rathore. 2022. Deep Reinforce-
ment Learning in the Advanced Cybersecurity Threat Detection and Protection.
Information Systems Frontiers (2022).

[45] David Silver, Aja Huang, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature (2016).

[46] David Silver, Thomas Hubert, Julian Schrittwieser, et al. 2018. A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play.
Science (2018).

[47] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. 2019. Individualized
Controlled Continuous Communication Model for Multiagent Cooperative and
Competitive Tasks. In International Conference on Learning Representations (ICLR
’19).

[48] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and Heng
Yin. 2022. MAB-Malware: A Reinforcement Learning Framework for Blackbox
Generation of Adversarial Malware. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS ’22).

[49] Maxwell Standen, Martin Lucas, David Bowman, Toby JṘicher, Junae Kim, and
Damian Marriott. 2021. CybORG: A Gym for the Development of Autonomous
Cyber Agents. In 1st International Workshop on Adaptive Cyber Defense (IJCAI
’21).

[50] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction.

[51] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation. In Proceedings of the 12th International Conference on Neural Information
Processing Systems (NeurIPS ’99).

[52] Microsoft Defender Research Team. 2021. CyberBattleSim. https://github.com/
microsoft/cyberbattlesim. Created by Christian Seifert, Michael Betser, William
Blum, James Bono, Kate Farris, Emily Goren, Justin Grana, Kristian Holsheimer,
Brandon Marken, Joshua Neil, Nicole Nichols, Jugal Parikh, Haoran Wei.

[53] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo
Perez-Vicente, Niall Williams, Yashas Lokesh, and Praveen Ravi. 2021. PettingZoo:
Gym for Multi-Agent Reinforcement Learning. In Advances in Neural Information
Processing Systems (NeurIPS ’21).

[54] U.S. DoD 2022. Securing Defense-Critical Supply Chains. An action plan developed
in response to President Biden’s Executive Order 14017. Online. U.S. DoD.

[55] Junia Valente and Alvaro A. Cardenas. 2017. Understanding Security Threats
in Consumer Drones Through the Lens of the Discovery Quadcopter Family.
In Proceedings of the 2017 Workshop on Internet of Things Security and Privacy
(IoTS&P ’17).

[56] Sanyam Vyas, John Hannay, Andrew Bolton, and Pete Burnap. 2023. Automated
Cyber Defence: A Review. Proceedings of the ACM on Measurement and Analysis
of Computing Systems (2023).

[57] Salim Al Wahaibi, Myles Foley, and Sergio Maffeis. 2023. SQIRL: Grey-Box
Detection of SQL Injection Vulnerabilities Using Reinforcement Learning. In
32nd USENIX Security Symposium (USENIX Security ’23).

[58] Guihong Wang and Jinglun Shi. 2019. Actor-Critic for Multi-agent System with
Variable Quantity of Agents. In IoT as a Service.

[59] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu,
Yingfeng Chen, Changjie Fan, and Yang Gao. 2020. From Few toMore: Large-Scale
Dynamic Multiagent Curriculum Learning. Proceedings of the AAAI Conference
on Artificial Intelligence (2020).

[60] Christopher J.C.H. Watkins and Peter Dayan. 1992. Technical Note: Q-Learning.
Machine Learning (1992).

[61] Steven D. Whitehead and Long-Ji Lin. 1995. Reinforcement learning of non-
Markov decision processes. Artificial Intelligence (1995).

[62] Melody Wolk, Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina
Moskowitz, Harold Nguyen, Nicole Nichols, Nicole Park, Paul Rachwalski, Frank
Rau, and Adrian Webster. 2022. Beyond CAGE: Investigating Generalization
of Learned Autonomous Network Defense Policies. In Reinforcement Learning
for Real Life Workshop in the 36th Conference on Neural Information Processing
Systems (RL4RealLife ’22).

[63] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.
2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning.

[64] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The Surprising Effectiveness of PPO in Cooperative Multi-
Agent Games. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (NeurIPS ’22).

[65] Ruotong Yu, Francesca Del Nin, Yuchen Zhang, Shan Huang, Pallavi Kaliyar,
Sarah Zakto, Mauro Conti, Georgios Portokalidis, and Jun Xu. 2022. Building
Embedded Systems Like It’s 1996. In 29th Annual Network and Distributed System
Security Symposium (NDSS ’22).

[66] Ce Zhou, Qiben Yan, Yan Shi, and Lichao Sun. 2022. DoubleStar: Long-Range
Attack Towards Depth Estimation based Obstacle Avoidance in Autonomous
Systems. In 31st USENIX Security Symposium (USENIX Security ’22).

APPENDIX
Supporting information.

A CW AGENT DEPENDENCIES
The CW agent algorithm (Algorithm 1) depends on two subroutines
to encode and decode explicit communication messages. These are
provided by Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: PAD
Args :canary, overheard,whistle
/* Pad canary, whistle and overheard into a

16 bit binary string */

1 Convert canary to binary and pad to 5 bits.
2 Convert overheard to 1 bit binary.
3 Convert whistle to binary and pad to 5 bits.
4 return (whistle << 11) ∨ (overheard << 6) ∨ canary

Algorithm 3: UNPAD

Args :𝑚 ∈ {0, 1}16
/* Recover the canary, whistle and overheard

values from a 16 bit binary string */

1 canary←𝑚 ∧ 0x3F
2 overheard← (𝑚 >> 6) ∧ 0x1
3 whistle← (𝑚 >> 11) ∧ 0x3F
4 return (canary, overheard, whistle)

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2305.19240
https://arxiv.org/abs/1707.06347
https://github.com/microsoft/cyberbattlesim
https://github.com/microsoft/cyberbattlesim

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Reinforcement Learning (RL)
	2.2 Curriculum Learning
	2.3 Autonomous Cyber Defence

	3 Attacker Model
	4 Environment
	4.1 Drone Platform
	4.2 Green Team
	4.3 Malware
	4.4 Blue Team

	5 Baseline
	6 Canaries and Whistles
	7 Joining the Opera
	7.1 Observation Space
	7.2 An Expert Curriculum
	7.3 A denoised reward

	8 Evaluation
	8.1 Observation Space
	8.2 Mixed Opera
	8.3 Policy Analysis

	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A CW Agent Dependencies

