
POSTER:
Autonomous Network Defence using Reinforcement Learning

Myles Foley
Imperial College London
m.foley20@imperial.ac.uk

Chris Hicks
The Alan Turing Institute
c.hicks@turing.ac.uk

Kate Highnam
The Alan Turing Institute, Imperial College London

k.highnam19@imperial.ac.uk

Vasilios Mavroudis
The Alan Turing Institute
vmavroudis@turing.ac.uk

ABSTRACT
In the network security arms race, the defender is significantly dis-
advantaged as they need to successfully detect and counter every
malicious attack. In contrast, the attacker needs to succeed only
once. To level the playing field, we investigate the effectiveness of au-
tonomous agents in a realistic networkdefence scenario.Wefirst out-
line the problem, provide the background on reinforcement learning
and detail our proposed agent design. Using a network environment
simulation, with 13 hosts spanning 3 subnets, we train a novel rein-
forcement learning agent and show that it can reliably defend contin-
ual attacks by two advanced persistent threat (APT) red agents: one
with complete knowledge of the network layout and another which
must discover resources through exploration but is more general.

CCS CONCEPTS
• Security and privacy→Network security; • Theory of com-
putation→Reinforcement learning.

KEYWORDS
Reinforcement Learning; Network Defence; Deep Learning
ACMReference Format:
Myles Foley, Chris Hicks, Kate Highnam, and Vasilios Mavroudis. 2022.
POSTER: Autonomous Network Defence using Reinforcement Learning.
In Proceedings of the 2022 ACMAsia Conference on Computer and Communi-
cations Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan.ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3488932.3527286

1 INTRODUCTION
Securing a computer network and its subsystems against attackers is
a complex task that requires both the right combination of tools and
expert knowledge [12].At present, this task is usually still handled by
humanoperators.However, human involvement increases the opera-
tional costs and the response times, leaving these systems at risk. For
instance, in 2020, attackers were estimated to spend a median of 24
days undetected inside a defensive environment [7].During this time
the attacker can further infiltrate, compromise, exfiltrate and per-
form other malicious activities within the network. Compared with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3527286

Figure 1: The CybORG network structure as specified in the
environment of the CAGEChallenge [13].
an adversary, a defender typically faces increased complexity as they
need to remove the threat whilst minimising operational disruption.

To advance autonomous defence, we investigate the application
of reinforcement learning (RL). In recent years, RL has excelled in
game-playing scenarios and has even exceeded human level ability
(e.g., ATARI arcade games [11], Dota 2 [3]). Despite its reach po-
tential, only a fewworks have sought to apply RL in the context of
network security [4, 6, 9].

In this paper, we present a hierarchical RL agent for autonomous
network defence. We demonstrate its success in winning the first
CAGE environment challenge [1, 13]. The challenge uses the Cy-
bORG environment [14] to simulate a live computer network with
several hosts and critical servers, as seen in Figure 1. This environ-
mentutilises ahigh-fidelity emulator, realisedusingvirtualmachines
running on AmazonWeb Services (AWS), to ensure that all available
actions and states are realistic [14].

Our contributions are as follows. We introduce our hierarchi-
cal agent architecture, featuring a controller agent selecting sub-
agents which are trained against specific adversarial strategies. We
demonstrate its capabilities against two adversaries: one which has
prior knowledge of the network structure and another that does not.
Through these experiments, we explain why the sum is greater than
the parts. We publicly release our models’ source code, the training
setup, and trained models of our winning solution for researchers
to compare against in the CAGE Challenge [1, 13].

This paper is structured in the following way. In Section 2 we
describe the CybORG environment. We present our hierarchical
solution and background in Section 3, followed by our results and
a discussion in Sections 4 and 5. We conclude in Section 6.

2 THECYBORG ENVIRONMENT
To showcase our model on the problem of network defence we lever-
age the recently proposed CybORG environment [14] as specified in
the CAGEChallenge [13]. The same network structure is used as the
agent’s environment and is seen in Figure 1. This network delivers

https://doi.org/10.1145/3488932.3527286
https://doi.org/10.1145/3488932.3527286


a contained, yet realistic setup, that can be emulated using Amazon
WebServices (AWS)or simulatedusingPython.Thenetworkconsists
of nine users and four servers that are present across three subnets.

The game is turn-based between the attacker and defender. Each
agent,whichhas limitedvisibility of thenetwork state, agent chooses
an action for each time-step. Based on the selected actions, the en-
vironment samples from a probability distribution (e.g. a valid node
restoration may occasionally fail) to update its state and returns a
reward to the agents. To prevent trivial solutions, the adversaries
are given an initial foothold on a predetermined device in the users’
subnet which cannot be ‘restored’ to a benign state by the defender.

The CAGE Challenge includes two adversaries: the B_lineAgent
whohasprior knowledge (i.e. perfect visibility of thenetwork’s struc-
ture but not of its current state), and the RedMeanderAgentwho starts
without prior information. Both agents share the same objective, to
reach the operational server and, after escalating their privileges,
disrupt its services. Due to its prior knowledge B_lineAgent follows
an almost optimal exploitation trajectory to the operational server.
In contrast, RedMeanderAgent scans the network for vulnerable hosts
and gradually propagates through the subnets.

State. This is a vector of 52 bits, 4 bits for each host representing if
the host has been scanned or exploited, and the access the attacker
has on the host, none, user, administrator, or unknown.

Action. The defending agent performs actions at a host level: 1)
Analysing processes on a specific host, 2) Terminating malicious
processes, and 3) Restoring a host to a previous (benign) state. The
defensive agent can alsomonitor network traffic or set up decoy host
services. The attacking agents can: 1) Scan a subnet for hosts, 2) Scan
the ports of a host, 3) Exploit a service on a port, 4) Escalate their
access in a host, and 5) Disrupt the services on the operational server.
Both agents have a ‘sleep’ action toperformnoactionon thenetwork.

Reward.Defensive rewardsareas follows: per adminaccess the red
agent has, per turn: -0.1 for anyhost, -1 for any server. There is -10 for
disruptionon theoperational server. Finally there is a -1 rewardwhen
any device must be restored. By having a negative reward for the de-
fensive agent it forces the agent tominimise the effect of the attacker.

3 HIERARCHICALRL LEARNINGMODEL
RL is a form ofmachine learning that optimises a given reward, 𝑟 . RL
problems are formulated around an agent that exists in an environ-
ment, this agent takes an action, 𝑎, which changes the agents state,
𝑠 , in the environment. The agent learns a policy 𝜋 that increases the
long-term reward, accounted for by a discount factor𝛾 , the optimal
policy is one that maximises the reward, thus solving the task [15].

3.1 Proximal Policy Optimisation
Proximal Policy Optimisation (PPO) is an efficient policy gradient
method for RL [11]. PPO can achieve human and super-human per-
formance in a range of complex environments including 49 separate
ATARI arcade games [11] and Dota 2 [3].

Taking a policy 𝜋 as 𝜋\ (where \ ∈R) define an objective function
based on the expected total reward obtained from the environment:
𝐽 (\ )=E𝜋0 [

∑∞
𝑡=0𝛾

𝑡𝑟𝑡 ]. This can then be solved using an actor-critic
architecture using a critic to measure how good an action is and
an actor to select actions. This policy gradient is then: ▽\ 𝐽 (\ ) =
E𝜋0 [▽\ log𝜋\ (𝑠,𝑎)𝐴𝜋\ (𝑠)]. Where𝐴𝜋\ (𝑠)=𝑄𝜋\ (𝑠,𝑎)−𝑉𝜋\ (𝑠) is the
advantage function to describe the advantage of action𝑎 over the av-
erage actiongivenbypolicy𝜋\ [15].Adeepneural-network can then

approximate the state-value function𝑉𝜋\ (𝑠) and another can model
the policy 𝜋\ . PPO also introduces a clipping function in gradient
descent. This allows the model to balance large updates which lead
to local optima and smaller updates which increase training time.

In ourmodelweuse the standard implementationof PPO included
in RLLib [8] but modify the hyperparameters after a grid-search.

3.2 Curiosity
Curiosity promotes exploration in an environment via an intrinsic
reward. Both sub agents (as defined in Section 3.3) use the Intrinsic
CuriosityModule (ICM) proposed by [10], this incentivises agents to
take actions where there is uncertainty in outcome, thus promoting
the exploration to unknown states. ICM also reduces noise in this
process by using only the relevant information in the state space.
Again, we use the implementation in RLLib [8] modifying param-
eters after a grid-search. The effect of curiosity on these sub agents
is illustrated clearly in the b-line-defence agent, where curiosity
improves the reward by nearly double. ICM particularly overcomes
the problem of developing strategies in the presence of randomness
in the adversary and the possibility of actions being unsuccessful.

3.3 Hierarchy
To solve the problem as described in Section 2 we develop a hierar-
chical model that can defend against two different adversaries, the
B_line and the Meander agents. In doing sowe demonstrate a state-of-
the-art solution to the network defence as in the CAGE Challenge.

For each of the sub agents in this hierarchy we train a PPO
Agent with curiosity against a single adversary. We name these
the b-line-defence (trained to defend against the B_line adversary),
and the meander-defence (trained against the Meander adversary).
Training occurs over episodes of 100 timesteps; the network and
agents are then reset to their initial state. This continues until the
reward of the defensive agent has converged.

The choice of PPO with curiosity was motivated by the improved
performance in training as compared toAPEXDQN [5], IMPALA [2],
PPO [11], and PPOwith curiosity [10]. This improved performance
is seen as the ability to maximise the reward against the adversary,
and thus minimising the effect of the adversary on the network.

We then train an RL agent ‘controller’, this deals with the high-
level problem of identifying the adversary currently attacking the
network. In training the controller defends each episode against a
random adversary. The controller then selects one of the pre-trained
sub-agents at each time-step to execute a low-level action. In this
way the controller should identify the adversary and choose the
agent trained to deal with the threat and mitigate it.

4 RESULTS
Here we present the results of our CAGE Challenge winning ap-
proach to autonomous network defence.

4.1 Challenge Evaluation
CAGE Challenge submissions were evaluated by testing the pro-
posed defensive ‘blue’ agent against three unique attacking ‘red’
agents. The B_lineAgent, RedMeanderAgent, and SleepAgent are faced
for 1000 episodes, for 30, 50, and 100 steps of the challenge envi-
ronment. The defensive blue agent’s score in each of the 9 different
evaluation scenarios, represented by all combinations of red agents
and episode step lengths, is averaged for the final score. The result of
our winning submission in the CAGE Challenge is shown in Table 1.



Red Agent 30 Steps 50 Steps 100 Steps

B_lineAgent -2.83 -3.56 -8.09
RedMeanderAgent -2.66 -3.22 -4.58
SleepAgent 0.0 0.0 0.0

Table 1: The results of our proposed solution to autonomous
network defence in the CAGE challenge environment.

The SleepAgent only performs the Sleep action, therefore the
perfect score, which our agent always achieves, is 0. Against the
more challenging RedMeanderAgent and B_lineAgent our defensive
agent maintains an average score of below -10 in all scenarios. This
is particularly impressive when considering that a compromised
operational server is penalised with a score of -10 for every step.
On average, the operational server is never compromised when our
defensiveblueagent isprotecting theCAGEChallengeenvironment.

4.2 Extended Evaluation
To help motivate, understand, and measure the performance of our
hierarchical RL agent we perform an extended evaluation. Table 2
shows that whilst our B-line-defence and Meander-defence agents
performwell against the B_lineAgent and RedMeanderAgent, respec-
tively; the policies fail to generalise and the average performance
of these agents in both tasks is unsatisfactory. Our Hierarchical
agent performs very well at choosing the best specialised sub-agent
for each observation. This is evidenced in comparison with a privi-
leged Hierarchical-perfect agent and a Hierarchical-chance agent
that chooses a blue agent uniformly at random. The Hierarchical
-perfect agent has perfect knowledge of the current red agent adver-
saryandalways chooses the correspondingdefensiveblueagent.Our
Hierarchical agent does far better than chance and scores higher
than the sum of the B-line-defence and Meander-defence agents.

Blue Agent B_lineAgent RedMeanderAgent Avg.

B-line-defence -10.80 -61.05 -35.93
Meander-defence -38.52 -7.06 -22.79
Hierarchical -11.01 -5.84 -8.43
Hierarchical-perfect -10.7 -6.12 -8.41
Hierarchical-chance -41.68 -33.52 -37.6

Table 2: The performance of each blue agent against the
B_lineAgent and RedMeanderAgent adversaries.

5 DISCUSSION
The results show our hierarchical approach to autonomous network
defence, which is state-of-the-art in the CAGE environment, out-
performs the defensive capabilities of any sub-agent trained against
a single red agent. We suggest that neither the B-line-defence or
Meander-defence agent can fully generalise from training against a
single adversary and that our hierarchical architecture provides a
general mechanism to combine specialised sub-agents into a more
widelyapplicabledefensive capability.The theory that avoidingover-
fitting is critical to high-performance autonomous network defence
is also supported by the relative performance of the B_lineAgent

and RedMeanderAgent shown in Table 2. The B_lineAgent, which
uses specialised knowledge of the network structure to execute
a more efficient but less general attack, trains a worse-performing

B-line-defence agent; in the average case, than the less specialised
RedMeanderAgent. Additionally, our experiments with curiosity, a
technique which encourages greater generalisation [10], substan-
tially improves the performance of the B-line-defence agent even
against the B_lineAgent itself.

6 CONCLUSION
This paper investigates the application of intelligent agents to au-
tonomously defend a computer network. Utilising the recently pro-
posed CAGE Challenge scenario, and CybORG (an autonomous net-
work defence environment), we develop a hierarchical RL agent that
can defend against multiple APT adversaries over varying lengths of
time and overcomes the performance limitations of training against
a single adversary. Surprisingly, we show that our hierarchy of spe-
cialised agents outperforms any of its individual components and
provides for a more generalised defensive capability. We provide an
open-source implementation of our state-of-the-art solution which
we hope will help to fill the gap in autonomous network defence
research. Promising directions for future research include adaptive
fine-tuning of specialised agents by the controller, encouraging even
greater generalisation, and formalising the principles which can
ensure and quantify it, and multi-agent team defensive capabilities.
ACKNOWLEDGEMENT. The authors would like to acknowledge
support from the Defence and Security Programme at The Alan
Turing Institute, funded by the Government Communications Head-
quarters (GCHQ).

REFERENCES
[1] CAGE. 2021. CAGE Challenge 1. In IJCAI-21 1st International Workshop on

Adaptive Cyber Defense.
[2] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V.Mnih, T.Ward, Y. Doron, V. Firoiu,

T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu. 2018. IMPALA: Scalable
Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
arXiv:1802.01561 [cs].

[3] OpenAI et al. 2019. Dota 2 with Large Scale Deep Reinforcement Learning.
arXiv:1912.06680 [cs, stat].

[4] M. Feng and H. Xu. 2017. Deep reinforecement learning based optimal defense
for cyber-physical system in presence of unknown cyber-attack. In 2017 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE.

[5] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D.
Silver. 2018. Distributed Prioritized Experience Replay. In arXiv:1803.00933 [cs].

[6] Z. Hu, R. Beuran, and Y. Tan. 2020. Automated Penetration Testing Using Deep
Reinforcement Learning. In 2020 IEEE European Symposium on Security and
PrivacyWorkshops (EuroS&PW).

[7] FireEye Inc. 2021.M-Trends 2021: Cyber Security Insights. Technical Report. https://
vision.fireeye.com/content/fireeye-vision/en_US/editions/11/11-m-trends.html

[8] E. Liang, R. Liaw, P.Moritz, R. Nishihara, R. Fox, K. Goldberg, J E. Gonzalez,M I. Jor-
dan, and I. Stoica. 2018. RLlib:Abstractions forDistributedReinforcementLearning.
In Proceedings of the 35th International Conference onMachine Learning (ICML’18).

[9] T T. Nguyen and V J. Reddi. 2021. Deep Reinforcement Learning for Cyber
Security. IEEE Transactions on Neural Networks and Learning Systems.

[10] D. Pathak, P. Agrawal, Alexei A. Efros, and T. Darrell. 2017. Curiosity-Driven
Exploration by Self-Supervised Prediction. In Proceedings of the 34th International
Conference on Machine Learning (ICML’17).

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal
Policy Optimization Algorithms. In arXiv:1707.06347 [cs].

[12] P. Speicher, M. Steinmetz, J. Hoffmann, M. Backes, and R. Kunnemann. 2019.
Towards automated network mitigation analysis. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (SAC ’19).

[13] M. Standen, D. Bowman, S. Hoang, T. Richer, M. Lucas, and R. Van Tas-
sel. 2021. Cyber Autonomy Gym for Experimentation Challenge 1.
https://github.com/cage-challenge/cage-challenge-1.

[14] M. Standen, M. Lucas, David B., T J. Richer, J. Kim, and D. Marriott. 2021. CybORG:
A Gym for the Development of Autonomous Cyber Agents. In IJCAI-21 1st
International Workshop on Adaptive Cyber Defense.

[15] R S. Sutton andAG. Barto. 2018. Reinforcement Learning: An Introduction (2nd ed.).

https://vision.fireeye.com/content/fireeye-vision/en_US/editions/11/11-m-trends.html
https://vision.fireeye.com/content/fireeye-vision/en_US/editions/11/11-m-trends.html
https://github.com/cage-challenge/cage-challenge-1

	Abstract
	1 Introduction
	2 The CybORG Environment
	3 Hierarchical RL Learning Model
	3.1 Proximal Policy Optimisation
	3.2 Curiosity
	3.3 Hierarchy

	4 Results
	4.1 Challenge Evaluation
	4.2 Extended Evaluation

	5 Discussion
	6 Conclusion
	References

